Skip to main content

Advertisement

Log in

Hypoxia-Sensitive Materials for Biomedical Applications

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hypoxia is a typical hallmark of various diseases, including cancer, ischemic diseases, and stroke. It is also associated with the disease progression. Therefore, it is critical to develop an effective strategy to target the hypoxic region for diagnosis and treatment. In this review, we summarize recent progress in the development of hypoxia-responsive systems for imaging, sensing and therapy. Two types of hypoxia-sensitive systems, the hypoxia inducible factor-1 based systems and bioreductive molecule based systems, were reviewed with comments on their advantages and limitations. Future opportunities and challenges are also discussed in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abbattista, M. R., S. M. Jamieson, Y. Gu, J. E. Nickel, S. M. Pullen, A. V. Patterson, W. R. Wilson, and C. P. Guise. Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma. Cancer Biol. Ther. 16:610–622, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahn, G.-O., K. J. Botting, A. V. Patterson, D. C. Ware, M. Tercel, and W. R. Wilson. Radiolytic and cellular reduction of a novel hypoxia-activated cobalt (III) prodrug of a chloromethylbenzindoline DNA minor groove alkylator. Biochem. Pharmacol. 71:1683–1694, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Arany, Z., S.-Y. Foo, Y. Ma, J. L. Ruas, A. Bommi-Reddy, G. Girnun, M. Cooper, D. Laznik, J. Chinsomboon, and S. M. Rangwala. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1&agr. Nature 451:1008–1012, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Bhang, S. H., J. H. Kim, H. S. Yang, W.-G. La, T.-J. Lee, G. H. Kim, H. A. Kim, M. Lee, and B.-S. Kim. Combined gene therapy with hypoxia-inducible factor-1α and heme oxygenase-1 for therapeutic angiogenesis. Tissue Eng. Part A 17:915–926, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Binley, K., Z. Askham, L. Martin, H. Spearman, D. Day, S. Kingsman, and S. Naylor. Hypoxia-mediated tumour targeting. Gene Ther. 10:540–549, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Borad, M. J., S. G. Reddy, N. Bahary, H. E. Uronis, D. Sigal, A. L. Cohn, W. R. Schelman, J. Stephenson, E. G. Chiorean, and P. J. Rosen. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 33:1475–1481, 2015.

    Article  CAS  PubMed  Google Scholar 

  7. Bowers, D. T., M. L. Tanes, A. Das, Y. Lin, N. A. Keane, R. A. Neal, M. E. Ogle, K. L. Brayman, C. L. Fraser, and E. A. Botchwey. Spatiotemporal oxygen sensing using dual emissive boron dye-polylactide nanofibers. ACS Nano 8:12080–12091, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, J. M., and W. R. Wilson. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4:437–447, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Bruehlmeier, M., U. Roelcke, P. A. Schubiger, and S. M. Ametamey. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J. Nucl. Med. 45:1851–1859, 2004.

    PubMed  Google Scholar 

  10. Carreau, A., B. E. Hafny-Rahbi, A. Matejuk, C. Grillon, and C. Kieda. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell Mol. Med. 15:1239–1253, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, B. H., Y. Ha, C.-H. Ahn, X. Huang, J.-M. Kim, S. R. Park, H. Park, H. C. Park, S. W. Kim, and M. Lee. A hypoxia-inducible gene expression system using erythropoietin 3′ untranslated region for the gene therapy of rat spinal cord injury. Neurosci. Lett. 412:118–122, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. Coleman, C. N. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J. Natl. Cancer Inst. 80:310–317, 1988.

    Article  CAS  PubMed  Google Scholar 

  13. Cui, L., Y. Zhong, W. Zhu, Y. Xu, Q. Du, X. Wang, X. Qian, and Y. Xiao. A new prodrug-derived ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging in tumor cell. Org. Lett. 13:928–931, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Cullberg, K. B., J. Olholm, S. K. Paulsen, C. B. Foldager, M. Lind, B. Richelsen, and S. B. Pedersen. Resveratrol has inhibitory effects on the hypoxia-induced inflammation and angiogenesis in human adipose tissue in vitro. Eur. J. Pharm. Sci. 49:251–257, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Dachs, G. U., A. V. Patterson, J. D. Firth, P. J. Ratcliffe, K. S. Townsend, I. J. Stratford, and A. L. Harris. Targeting gene expression to hypoxic tumor cells. Nat. Med. 3:515–520, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Di Gregorio, E., G. Ferrauto, E. Gianolio, S. Lanzardo, C. Carrera, F. Fedeli, and S. Aime. An MRI method to map tumor hypoxia using red blood cells loaded with a pO2-responsive Gd-agent. ACS Nano 9:8239–8248, 2015.

    Article  PubMed  CAS  Google Scholar 

  17. Di, J., J. Yu, Y. Ye, D. Ranson, A. Jindal, and Z. Gu. Engineering synthetic insulin-secreting cells using hyaluronic acid microgels integrated with glucose-responsive nanoparticles. Cell. Mol. Bioeng. 8:445–454, 2015.

    Article  CAS  Google Scholar 

  18. Do, Q. N., J. S. Ratnakar, Z. Kovács, and A. D. Sherry. Redox-and hypoxia-responsive MRI Contrast agents. ChemMedChem 9:1116–1129, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duan, J.-X., H. Jiao, J. Kaizerman, T. Stanton, J. W. Evans, L. Lan, G. Lorente, M. Banica, D. Jung, and J. Wang. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem. 51:2412–2420, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Edgar, L. J., R. N. Vellanki, A. Halupa, D. Hedley, B. G. Wouters, and M. Nitz. Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry. Angew. Chem. Int. Ed. 53:11473–11477, 2014.

    Article  CAS  Google Scholar 

  21. Eschmann, S.-M., F. Paulsen, M. Reimold, H. Dittmann, S. Welz, G. Reischl, H.-J. Machulla, and R. Bares. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J. Nucl. Med. 46:253–260, 2005.

    PubMed  Google Scholar 

  22. Everett, S. A., E. Swann, M. A. Naylor, M. R. Stratford, K. B. Patel, N. Tian, R. G. Newman, B. Vojnovic, C. J. Moody, and P. Wardman. Modifying rates of reductive elimination of leaving groups from indolequinone prodrugs: a key factor in controlling hypoxia-selective drug release. Biochem. Pharmacol. 63:1629–1639, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. Guise, C. P., A. M. Mowday, A. Ashoorzadeh, R. Yuan, W.-H. Lin, D.-H. Wu, J. B. Smaill, A. V. Patterson, and K. Ding. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. Chin. J. Cancer 33:80, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haffty, B. G., Y. H. Son, C. T. Sasaki, R. Papac, D. Fischer, S. Rockwell, A. Sartorelli, and J. J. Fischer. Mitomycin C as an adjunct to postoperative radiation therapy in squamous cell carcinoma of the head and neck: results from two randomized clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 27:241–250, 1993.

    Article  CAS  PubMed  Google Scholar 

  25. Haffty, B. G., Y. H. Son, L. D. Wilson, R. Papac, D. Fischer, S. Rockwell, A. C. Sartorelli, D. Ross, C. T. Sasaki, and J. J. Fischer. Bioreductive alkylating agent porfiromycin in combination with radiation therapy for the management of squamous cell carcinoma of the head and neck. Radiat. Oncol. Investig. 5:235–245, 1997.

    Article  CAS  PubMed  Google Scholar 

  26. Haffty, B. G., L. D. Wilson, Y. H. Son, E. I. Cho, R. J. Papac, D. B. Fischer, S. Rockwell, A. C. Sartorelli, D. A. Ross, and C. T. Sasaki. Concurrent chemo-radiotherapy with mitomycin C compared with porfiromycin in squamous cell cancer of the head and neck: final results of a randomized clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 61:119–128, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2:38–47, 2002.

    Article  CAS  PubMed  Google Scholar 

  28. Hendricksen, K., E. Cornel, T. de Reijke, H. Arentsen, S. Chawla, and J. Witjes. Phase 2 study of adjuvant intravesical instillations of apaziquone for high risk nonmuscle invasive bladder cancer. J. Urol. 187:1195–1199, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Hodgkiss, R. J. Use of 2-nitroimidazoles as bioreductive markers for tumour hypoxia. Anti-Cancer Drug Des. 13:687–702, 1998.

    CAS  Google Scholar 

  30. Hong, S. W., J. W. Yoo, H. S. Kang, S. Kim, and D.-K. Lee. HIF-1α-dependent gene expression program during the nucleic acid-triggered antiviral innate immune responses. Mol. Cells 27:243–250, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Hu, Q., P. S. Katti, and Z. Gu. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6:12273–12286, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Q., Sun W., Wang C., Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Deliv. Rev. 2015.

  33. Huang, B., A. Desai, S. Tang, T. P. Thomas, and J. R. Baker, Jr. The synthesis of ac (RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release. Org. Lett. 12:1384–1387, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, L. E., J. Gu, M. Schau, and H. F. Bunn. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95:7987–7992, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inman, B. A., P. R. Stauffer, O. A. Craciunescu, P. F. Maccarini, M. W. Dewhirst, and Z. Vujaskovic. A pilot clinical trial of intravesical mitomycin-C and external deep pelvic hyperthermia for non-muscle-invasive bladder cancer. Int. J. Hyperth. 30:171–175, 2014.

    Article  CAS  Google Scholar 

  36. Jiang, B.-H., E. Rue, G. L. Wang, R. Roe, and G. L. Semenza. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271:17771–17778, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, B.-H., G. L. Semenza, C. Bauer, and H. H. Marti. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271:1172–1180, 1996.

    Google Scholar 

  38. Jiang, B.-H., J. Z. Zheng, S. W. Leung, R. Roe, and G. L. Semenza. Transactivation and inhibitory domains of hypoxia-inducible factor 1α modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:19253–19260, 1997.

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy, K. A., S. Rockwell, and A. C. Sartorelli. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res. 40:2356–2360, 1980.

    CAS  PubMed  Google Scholar 

  40. Kim, H. A., K. Kim, S. W. Kim, and M. Lee. Transcriptional and post-translational regulatory system for hypoxia specific gene expression using the erythropoietin enhancer and the oxygen-dependent degradation domain. J. Controll. Release 121:218–224, 2007.

    Article  CAS  Google Scholar 

  41. Kim, H. A., S. Lim, H.-H. Moon, S. W. Kim, K.-C. Hwang, M. Lee, S. H. Kim, and D. Choi. Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia. Pharm. Res. 27:2075–2084, 2010.

    Article  CAS  PubMed  Google Scholar 

  42. Kiyose, K., K. Hanaoka, D. Oushiki, T. Nakamura, M. Kajimura, M. Suematsu, H. Nishimatsu, T. Yamane, T. Terai, and Y. Hirata. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J. Am. Chem. Soc. 132:15846–15848, 2010.

    Article  CAS  PubMed  Google Scholar 

  43. Kizaka-Kondoh, S., and H. Konse-Nagasawa. Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci. 100:1366–1373, 2009.

    Article  CAS  PubMed  Google Scholar 

  44. Kuchimaru, T., T. Kadonosono, S. Tanaka, T. Ushiki, M. Hiraoka, and S. Kizaka-Kondoh. In vivo imaging of HIF-active tumors by an oxygen-dependent degradation protein probe with an interchangeable labeling system. PLoS One 5:e15736, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, M., M. Bikram, S. Oh, D. A. Bull, and S. W. Kim. Sp1-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease. Pharm. Res. 21:736–741, 2004.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, M., D. Choi, M. J. Choi, J. H. Jeong, W. J. Kim, S. Oh, Y.-H. Kim, D. A. Bull, and S. W. Kim. Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the VEGF gene therapy. J. Controll. Release 115:113–119, 2006.

    Article  CAS  Google Scholar 

  47. Lee, M., E. S. Lee, Y. S. Kim, B. H. Choi, S. R. Park, H. S. Park, H. C. Park, S. W. Kim, and Y. Ha. Ischemic injury-specific gene expression in the rat spinal cord injury model using hypoxia-inducible system. Spine 30:2729–2734, 2005.

    Article  PubMed  Google Scholar 

  48. Lee, N. Y., J. G. Mechalakos, S. Nehmeh, Z. Lin, O. D. Squire, S. Cai, K. Chan, P. B. Zanzonico, C. Greco, and C. C. Ling. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 70:2–13, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, M., J. Rentz, M. Bikram, S. Han, D. Bull, and S. Kim. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 10:1535–1542, 2003.

    Article  CAS  PubMed  Google Scholar 

  50. Li, W., Y. Li, S. Guan, J. Fan, C. F. Cheng, A. M. Bright, C. Chinn, M. Chen, and D. T. Woodley. Extracellular heat shock protein-90α: linking hypoxia to skin cell motility and wound healing. EMBO J. 26:1221–1233, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Y., Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, and F. Li. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging. J. Am. Chem. Soc. 137:6407–6416, 2015.

    Article  CAS  PubMed  Google Scholar 

  52. Lin, Q., C. Bao, Y. Yang, Q. Liang, D. Zhang, S. Cheng, and L. Zhu. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv. Mater. 25:1981–1986, 2013.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, J., Y. Liu, W. Bu, J. Bu, Y. Sun, J. Du, and J. Shi. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 136:9701–9709, 2014.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, Q., J. D. Sun, J. Wang, D. Ahluwalia, A. F. Baker, L. D. Cranmer, D. Ferraro, Y. Wang, J.-X. Duan, and W. S. Ammons. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother. Pharmacol. 69:1487–1498, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, H., R. Zhang, Y. Niu, Y. Li, C. Qiao, J. Weng, J. Li, X. Zhang, Z. Xiao, and X. Zhang. Development of hypoxia-triggered prodrug micelles as doxorubicin carriers for tumor therapy. RSC Adv. 5:20848–20857, 2015.

    Article  CAS  Google Scholar 

  56. Lu, Y., W. Sun, and Z. Gu. Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Controll. Release 194:1–19, 2014.

    Article  CAS  Google Scholar 

  57. Manesh, D. M., J. El-Hoss, K. Evans, J. Richmond, C. E. Toscan, L. S. Bracken, A. Hedrick, R. Sutton, G. M. Marshall, and W. R. Wilson. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood 126:1193–1202, 2015.

    Article  CAS  Google Scholar 

  58. McKeage, M. J., Y. Gu, W. R. Wilson, A. Hill, K. Amies, T. J. Melink, and M. B. Jameson. A phase I trial of PR-104, a pre-prodrug of the bioreductive prodrug PR-104A, given weekly to solid tumour patients. BMC Cancer 11:432, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mitragotri, S., D. G. Anderson, X. Chen, E. K. Chow, D. Ho, A. V. Kabanov, J. M. Karp, K. Kataoka, C. A. Mirkin, and S. H. Petrosko. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9:6644–6654, 2015.

    Article  CAS  PubMed  Google Scholar 

  60. Nunn, A., K. Linder, and H. W. Strauss. Nitroimidazoles and imaging hypoxia. Eur. J. Nucl. Med. 22:265–280, 1995.

    Article  CAS  PubMed  Google Scholar 

  61. Patterson, A. V., D. M. Ferry, S. J. Edmunds, Y. Gu, R. S. Singleton, K. Patel, S. M. Pullen, K. O. Hicks, S. P. Syddall, and G. J. Atwell. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res. 13:3922–3932, 2007.

    Article  CAS  PubMed  Google Scholar 

  62. Perche, F., S. Biswas, T. Wang, L. Zhu, and V. Torchilin. Hypoxia-targeted siRNA delivery. Angew. Chem. 126:3430–3434, 2014.

    Article  Google Scholar 

  63. Phillips, R. M., H. R. Hendriks, and G. J. Peters. EO9 (Apaziquone): from the clinic to the laboratory and back again. Br. J. Pharmacol. 168:11–18, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Plumb, J. A., and P. Workman. Unusually marked hypoxic sensitization to indoloquinone E09 and mitomycin C in a human colon-tumour cell line that lacks DT-diaphorase activity. Int. J. Cancer 56:134–139, 1994.

    Article  CAS  PubMed  Google Scholar 

  65. Qian, C., J. Yu, Y. Chen, Q. Hu, X. Xiao, W. Sun, C. Wang, P. Feng, Q. Shen, and Z. Gu. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016. doi:10.1002/adma.201505869.

    Google Scholar 

  66. Rasey, J. S., P. D. Hofstrand, L. K. Chin, and T. J. Tewson. Characterization of [18F] fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J. Nucl. Med. 40:1072, 1999.

    CAS  PubMed  Google Scholar 

  67. Rhim, T., D. Y. Lee, and M. Lee. Hypoxia as a target for tissue specific gene therapy. J. Controll. Release 172:484–494, 2013.

    Article  CAS  Google Scholar 

  68. Rockwell, S., S. R. Keyes, and A. C. Sartorelli. Preclinical studies of porfiromycin as an adjunct to radiotherapy. Radiat. Res. 116:100–113, 1988.

    Article  CAS  PubMed  Google Scholar 

  69. Rojas-Quijano, F. A., G. Tircsó, E. Tircsóné Benyó, Z. Baranyai, H. Tran Hoang, F. K. Kálmán, P. K. Gulaka, V. D. Kodibagkar, S. Aime, and Z. Kovács. Synthesis and characterization of a hypoxia-sensitive MRI probe. Chem. Eur. J. 18:9669–9676, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schoonman, G. G., P. S. Sándor, A. C. Nirkko, T. Lange, T. Jaermann, U. Dydak, C. Kremer, M. D. Ferrari, P. Boesiger, and R. W. Baumgartner. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J. Cereb. Blood Flow Metab. 28:198–206, 2008.

    Article  CAS  PubMed  Google Scholar 

  71. Semenza, G. L., P. H. Roth, H.-M. Fang, and G. L. Wang. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269:23757–23763, 1994.

    CAS  PubMed  Google Scholar 

  72. Shibata, T., N. Akiyama, M. Noda, K. Sasai, and M. Hiraoka. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes. Int. J. Radiat. Oncol. Biol. Phys. 42:913–916, 1998.

    Article  CAS  PubMed  Google Scholar 

  73. Shibata, T., A. Giaccia, and J. Brown. Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther. 7:493–498, 2000.

    Article  CAS  PubMed  Google Scholar 

  74. Singleton, R. S., C. P. Guise, D. M. Ferry, S. M. Pullen, M. J. Dorie, J. M. Brown, A. V. Patterson, and W. R. Wilson. DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res. 69:3884–3891, 2009.

    Article  CAS  PubMed  Google Scholar 

  75. Sun, J. D., Q. Liu, J. Wang, D. Ahluwalia, D. Ferraro, Y. Wang, J.-X. Duan, W. S. Ammons, J. G. Curd, and M. D. Matteucci. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Res. 18:758–770, 2012.

    Article  CAS  PubMed  Google Scholar 

  76. Sun, W., Y. Lu, and Z. Gu. Advances in anticancer protein delivery using micro-/nanoparticles. Part. Syst. Charact. 31:1204–1222, 2014.

    Article  CAS  Google Scholar 

  77. Tai, W., R. Mo, J. Di, V. Subramanian, X. Gu, J. B. Buse, and Z. Gu. Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules 15:3495–3502, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takasawa, M., R. R. Moustafa, and J.-C. Baron. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 39:1629–1637, 2008.

    Article  CAS  PubMed  Google Scholar 

  79. Tanabe, K., H. Harada, M. Narazaki, K. Tanaka, K. Inafuku, H. Komatsu, T. Ito, H. Yamada, Y. Chujo, and T. Matsuda. Monitoring of biological one-electron reduction by 19F NMR using hypoxia selective activation of an 19F-labeled indolequinone derivative. J. Am. Chem. Soc. 131:15982–15983, 2009.

    Article  CAS  PubMed  Google Scholar 

  80. Thomson, P. I., V. L. Camus, Y. Hu, and C. J. Campbell. Series of quinone-containing nanosensors for biologically relevant redox potential determination by surface-enhanced Raman spectroscopy. Anal. Chem. 87:4719–4725, 2015.

    Article  CAS  PubMed  Google Scholar 

  81. Tomasz, M., and Y. Palom. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol. Ther. 76:73–87, 1997.

    Article  CAS  PubMed  Google Scholar 

  82. Tracy, J. W., and L. T. Webster. Drugs used in the chemotherapy of protozoal infections. The pharmacological basis of therapeutics (9th ed.). New York: McGraw-Hill Book Co., pp. 987–1008, 1996.

    Google Scholar 

  83. Tsuzuki, Y., D. Fukumura, B. Oosthuyse, C. Koike, P. Carmeliet, and R. K. Jain. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60:6248–6252, 2000.

    CAS  PubMed  Google Scholar 

  84. van der Heijden, A. G., P. M. Moonen, E. B. Cornel, H. Vergunst, T. M. de Reijke, E. van Boven, E. J. Barten, R. Puri, C. K. van Kalken, and J. A. Witjes. Phase II marker lesion study with intravesical instillation of apaziquone for superficial bladder cancer: toxicity and marker response. J. Urol. 176:1349–1353, 2006.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, G. L., B.-H. Jiang, E. A. Rue, and G. L. Semenza. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA 92:5510–5514, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, G. L., and G. L. Semenza. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. 90:4304–4308, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, X.-D., J. A. Stolwijk, T. Lang, M. Sperber, R. J. Meier, J. Wegener, and O. S. Wolfbeis. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J. Am. Chem. Soc. 134:17011–17014, 2012.

    Article  CAS  PubMed  Google Scholar 

  88. Ware, D. C., B. D. Palmer, W. R. Wilson, and W. A. Denny. Hypoxia-selective antitumor agents. 7. Metal complexes of aliphatic mustards as a new class of hypoxia-selective cytotoxins. Synthesis and evaluation of cobalt (III) complexes of bidentate mustards. J. Med. Chem. 36:1839–1846, 1993.

    Article  CAS  PubMed  Google Scholar 

  89. Weiss, G. J., J. R. Infante, E. G. Chiorean, M. J. Borad, J. C. Bendell, J. R. Molina, R. Tibes, R. K. Ramanathan, K. Lewandowski, and S. F. Jones. Phase 1 study of the safety, tolerability, and pharmacokinetics of TH-302, a hypoxia-activated prodrug, in patients with advanced solid malignancies. Clin. Cancer Res. 17:2997–3004, 2011.

    Article  CAS  PubMed  Google Scholar 

  90. Won, Y.-W., M. Lee, H. A. Kim, D. A. Bull, and S. W. Kim. Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion. J. Controll. Release 160:525–531, 2012.

    Article  CAS  Google Scholar 

  91. Ye, Y., J. Yu, N.-Y. Nguyen, J. B. Buse, and Z. Gu. Microneedle integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater. 2016. doi:10.1002/adma.201506025.

    Google Scholar 

  92. Yockman, J., D. Choi, M. Whitten, C. Chang, A. Kastenmeier, H. Erickson, A. Albanil, M. Lee, S. Kim, and D. Bull. Polymeric gene delivery of ischemia-inducible VEGF significantly attenuates infarct size and apoptosis following myocardial infarct. Gene Ther. 16:127–135, 2009.

    Article  CAS  PubMed  Google Scholar 

  93. Yu, J., Y. Zhang, Y. Ye, R. DiSanto, W. Sun, D. Ranson, F. S. Ligler, J. B. Buse, and Z. Gu. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 112:8260–8265, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan, J., Y.-Q. Xu, N.-N. Zhou, R. Wang, X.-H. Qian, and Y.-F. Xu. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Adv. 4:56207–56210, 2014.

    Article  CAS  Google Scholar 

  95. Zhang, G., G. M. Palmer, M. W. Dewhirst, and C. L. Fraser. A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat. Mater. 8:747–751, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Z., J. Yan, Y. Chang, S. S. Yan, and H. Shi. Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr. Med. Chem. 18:4335, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao, Y., S. Wu, J. Wu, P. Jia, S. Gao, X. Yan, and Y. Wang. Introduction of hypoxia-targeting p53 fusion protein for the selective therapy of non-small cell lung cancer. Cancer Biol. Ther. 11:95–107, 2011.

    Article  CAS  PubMed  Google Scholar 

  98. Zheng, X., H. Tang, C. Xie, J. Zhang, W. Wu, and X. Jiang. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. 127:8212–8217, 2015.

    Article  Google Scholar 

  99. Zheng, X., X. Wang, H. Mao, W. Wu, B. Liu, and X. Jiang. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 2015. doi:10.1038/ncomms6834.

    Google Scholar 

  100. Zheng, R., Q. Yao, G. Xie, S. Du, C. Ren, Y. Wang, and Y. Yuan. TAT-ODD-p53 enhances the radiosensitivity of hypoxic breast cancer cells by inhibiting Parkin-mediated mitophagy. Oncotarget 6:17417–17429, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhou, S., L. Gu, J. He, H. Zhang, and M. Zhou. MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol. Cell. Biol. 31:4928–4937, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu, H., and H. F. Bunn. Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir. Physiol. 115:239–247, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Grants from the American Diabetes Association (ADA) to Z.G. (1-14-JF-29 and 1-15-ACE-21) and the Grant from NC TraCS, NIH’s Clinical and Translational Science Awards (CTSA, NIH Grant 1UL1TR001111) at UNC-CH.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gu.

Additional information

Associate Editor Akhilesh K. Gaharwar oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhang, Y., Hu, X. et al. Hypoxia-Sensitive Materials for Biomedical Applications. Ann Biomed Eng 44, 1931–1945 (2016). https://doi.org/10.1007/s10439-016-1578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1578-6

Keywords

Navigation