Skip to main content
Log in

X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

  • Nondestructive Characterization of Biomaterials for Tissue Engineering and Drug Delivery
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Appel, A. A., M. A. Anastasio, J. C. Larson, and E. M. Brey. Imaging challenges in biomaterials and tissue engineering. Biomaterials 34:6615–6630, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Appel, A. A., J. C. Larson, A. B. Garson, 3rd, H. Guan, Z. Zhong, B. N. Nguyen, J. P. Fisher, M. A. Anastasio, and E. M. Brey. X-ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues. Biotechnol. Bioeng. 112:612–620, 2015.

    Article  CAS  PubMed  Google Scholar 

  3. Appel, A. A., J. C. Larson, S. Somo, Z. Zhong, P. P. Spicer, F. K. Kasper, A. B. Garson, 3rd, A. M. Zysk, A. G. Mikos, M. A. Anastasio, and E. M. Brey. Imaging of poly(alpha-hydroxy-ester) scaffolds with X-ray phase-contrast microcomputed tomography. Tissue Eng. Part C 18:859–865, 2012.

    Article  CAS  Google Scholar 

  4. Arfelli, F., M. Assante, V. Bonvicini, A. Bravin, G. Cantatore, E. Castelli, L. DallaPalma, M. Di Michiel, R. Longo, A. Olivo, S. Pani, D. Pontoni, P. Poropat, M. Prest, A. Rashevsky, G. Tromba, A. Vacchi, E. Vallazza, and F. Zanconati. Low-dose phase contrast x-ray medical imaging. Phys. Med. Biol. 43:2845–2852, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Artzi, N., N. Oliva, C. Puron, S. Shitreet, S. Artzi, A. Bon Ramos, A. Groothuis, G. Sahagian, and E. R. Edelman. In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat. Mater. 10:704–709, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bal, U., V. Andresen, B. Baggett, and U. Utzinger. Intravital confocal and two-photon imaging of dual-color cells and extracellular matrix mimics. Microsc. Microanal. 19:201–212, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bech, M., A. Tapfer, A. Velroyen, A. Yaroshenko, B. Pauwels, J. Hostens, P. Bruyndonckx, A. Sasov, and F. Pfeiffer. In-vivo dark-field and phase-contrast x-ray imaging. Scientific Rep. 3:3209, 2013.

    CAS  Google Scholar 

  8. Brankov, J. G., M. N. Wernick, Y. Yang, J. Li, C. Muehleman, Z. Zhong, and M. A. Anastasio. A computed tomography implementation of multiple-image radiography. Med. Phys. 33:278, 2006.

    Article  PubMed  Google Scholar 

  9. Brey, E. M., A. Appel, Y. C. Chiu, Z. Zhong, M. H. Cheng, H. Engel, and M. A. Anastasio. X-ray imaging of poly(ethylene glycol) hydrogels without contrast agents. Tissue Eng. Part C 16:1597–1600, 2010.

    Article  CAS  Google Scholar 

  10. Cedola, A., G. Campi, D. Pelliccia, I. Bukreeva, M. Fratini, M. Burghammer, L. Rigon, F. Arfelli, R. Chang, D. Chen, N. Dreossi, S. Sodini, G. Mohammadi, R. Tromba, R. Cancedda, and M. Mastrogiacomo. Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys. Med. Biol. 59:189–201, 2014.

    Article  PubMed  Google Scholar 

  11. Chan, K. W., G. Liu, X. Song, H. Kim, T. Yu, D. R. Arifin, A. A. Gilad, J. Hanes, P. Walczak, P. C. van Zijl, J. W. Bulte, and M. T. McMahon. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat. Mater. 12:268–275, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan, K. W., G. Liu, P. C. van Zijl, J. W. Bulte, and M. T. McMahon. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 35:7811–7818, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chiu, Y. C., E. M. Brey, and V. H. Perez-Luna. A study of the intrinsic autofluorescence of poly (ethylene glycol)-co-(l-lactic acid) diacrylate. J. Fluoresc. 22:907–913, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Chiu, Y. C., M. H. Cheng, H. Engel, S. W. Kao, J. C. Larson, S. Gupta, and E. M. Brey. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:6045–6051, 2011.

    Article  CAS  PubMed  Google Scholar 

  15. Chou, C.-Y., M. A. Anastasio, J. G. Brankov, M. N. Wernick, E. M. Brey, D. M. Connor, and Z. Zhong. An extended diffraction-enhanced imaging method for implementing multiple-image radiography. Phys. Med. Biol. 52:1923–1945, 2007.

    Article  PubMed  Google Scholar 

  16. Chung, E., S. Y. Nam, L. M. Ricles, S. Emelianov, and L. Suggs. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int. J. Nanomed. 8:325–336, 2013.

    Article  Google Scholar 

  17. Edmunds, K. J., and P. Gargiulo. Imaging approaches in functional assessment of implantable myogenic biomaterials and engineered muscle tissue. Eur. J. Transl. Myol. Basic Appl. Myol. 25:63–76, 2015.

    Article  Google Scholar 

  18. Francis-Sedlak, M. E., S. Uriel, J. C. Larson, H. P. Greisler, D. C. Venerus, and E. M. Brey. Characterization of type I collagen gels modified by glycation. Biomaterials 30:1851–1856, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Guan, H., Q. Xu, A. Garson and M. A. Anastasio. Depth resolution properties of in-line X-ray phase-contrast tomosynthesis. 9033: 90330H, 2014.

  20. Guan, H., Q. Xu, A. B. Garson, 3rd, and M. A. Anastasio. Boundary-enhancement in propagation-based x-ray phase-contrast tomosynthesis improves depth position characterization. Phys. Med. Biol. 60:N151–165, 2015.

    Article  PubMed  Google Scholar 

  21. Gudur, M. S., R. R. Rao, A. W. Peterson, D. J. Caldwell, J. P. Stegemann, and C. X. Deng. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging. PLoS One 9:e85749, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Izadifar, Z., L. D. Chapman, and X. Chen. Computed tomography diffraction-enhanced imaging for in situ visualization of tissue scaffolds implanted in cartilage. Tissue En. Part C 20:140–148, 2014.

    Article  CAS  Google Scholar 

  23. Jiang, B., T. M. Waller, J. C. Larson, A. A. Appel, and E. M. Brey. Fibrin-loaded porous poly (ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng. Part A 19:224–234, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karfeld-Sulzer, L. S., E. A. Waters, E. K. Kohlmeir, H. Kissler, X. Zhang, D. B. Kaufman, A. E. Barron, and T. J. Meade. Protein polymer MRI contrast agents: longitudinal analysis of biomaterials in vivo. Magn. Reson. Med. 65:220–228, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, K., C. G. Jeong, and S. J. Hollister. Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging. Acta Biomater. 4:783–790, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim, S., J. H. Lee, H. Hyun, Y. Ashitate, G. Park, K. Robichaud, E. Lunsford, S. J. Lee, G. Khang, and H. Choi. Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Scientific Rep. 3:1–7, 2013.

    Google Scholar 

  27. Lammers, G., P. D. Verhaegen, M. M. Ulrich, J. Schalkwijk, E. Middelkoop, D. Weiland, S. T. Nillesen, T. H. Van Kuppevelt, and W. F. Daamen. An overview of methods for the in vivo evaluation of tissue-engineered skin constructs. Tissue Eng. Part B 17:33–55, 2011.

    Article  CAS  Google Scholar 

  28. Lewis, R. A. Medical phase contrast x-ray imaging: current status and future prospects. Phys. Med. Biol. 49:3573–3583, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Liang, Y., A. Bar-Shir, X. Song, A. A. Gilad, P. Walczak, and J. W. Bulte. Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials 42:144–150, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lim, H., Y. Park, H. Cho, U. Je, D. Hong, C. Park, T. Woo, M. Lee, J. Kim, and N. Chung. Experimental setup and the system performance for single-grid-based phase-contrast x-ray imaging (PCXI) with a microfocus x-ray tube. Opt. Commun. 348:85–89, 2015.

    Article  CAS  Google Scholar 

  31. Mercado K. P., M. Helguera, D. C. Hocking and D. Dalecki. Noninvasive quantitative imaging of collagen microstructure in three-dimensional hydrogels using high-frequency ultrasound. Tissue Eng. Part C Methods 2015.

  32. Mollenhauer, J., M. E. Aurich, Z. Zhong, C. Muehleman, A. A. Cole, M. Hasnah, O. Oltulu, K. E. Kuettner, A. Margulis, and L. D. Chapman. Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthr. Cartil. 10:163–171, 2002.

    Article  CAS  PubMed  Google Scholar 

  33. Nam, S. Y., L. M. Ricles, L. J. Suggs, and S. Y. Emelianov. Imaging strategies for tissue engineering applications. Tissue Eng. Part B Rev. 21:88–102, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Paganin, D. M. Coherent X-Ray Optics. Oxford: Oxford University Press, p. 411, 2006.

    Book  Google Scholar 

  35. Ramaswamy, S., D. A. Wang, K. W. Fishbein, J. H. Elisseeff, and R. G. Spencer. An analysis of the integration between articular cartilage and nondegradable hydrogel using magnetic resonance imaging. J. Biomed. Mater. Res. Part B 77:144–148, 2006.

    Article  Google Scholar 

  36. Sciarretta, F. 5 to 8 years follow-up of knee chondral defects treated by PVA-H hydrogel implants. Eur. Rev. Med. Pharmacol. Sci. 17:3031–3038, 2013.

    CAS  PubMed  Google Scholar 

  37. Smith, L. E., M. Bonesi, R. Smallwood, S. J. Matcher, and S. MacNeil. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J. Tissue Eng. Regen. Med. 4:652–658, 2010.

    Article  PubMed  Google Scholar 

  38. Sumner, J. P., R. J. Hardie, J. N. Henningson, R. Drees, M. D. Markel, and D. Bjorling. Evaluation of submucosally injected polyethylene glycol-based hydrogel and bovine cross-linked collagen in the canine urethra using cystoscopy, magnetic resonance imaging and histopathology. Vet. Surg. 41:655–663, 2012.

    Article  PubMed  Google Scholar 

  39. Traoré, A., S. Woerly, V. Doan, Y. Marois, and R. Guidoin. In vivo magnetic resonance imaging and relaxometry study of a porous hydrogel implanted in the trapezius muscle of rabbits. Tissue Eng. 6:265–278, 2000.

    Article  PubMed  Google Scholar 

  40. van Zijl, P. C., and N. N. Yadav. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn. Reson. Med. 65:927–948, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang, Z., H. Pan, Z. Yuan, J. Liu, W. Chen, and Y. Pan. Assessment of dermal wound repair after collagen implantation with optical coherence tomography. Tissue Eng. Part C 14:35–45, 2008.

    Article  CAS  Google Scholar 

  42. Werkmeister, E., D. Dumas, N. de Isla, L. Marchal, and J. F. Stoltz. Interest of multimodal imaging in tissue engineering. Bio-Med. Mater. Eng. 18:329–333, 2008.

    CAS  Google Scholar 

  43. Wernick, M. N., O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman. Multiple-image radiography. Phys. Med. Biol. 48:3875–3895, 2003.

    Article  PubMed  Google Scholar 

  44. Yoon, K.-H., J. H. Ryu, C. W. Jung, C. W. Ryu, Y. J. Kim, Y. M. Kwon, M. Park, S. Cho, and K. S. Chon. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube. J. Korean Phys. Soc. 65:2111–2116, 2014.

    Article  Google Scholar 

  45. Yuan, Z., J. Zakhaleva, H. Ren, J. Liu, W. Chen, and Y. Pan. Noninvasive and high-resolution optical monitoring of healing of diabetic dermal excisional wounds implanted with biodegradable in situ gelable hydrogels. Tissue Eng. Part C 16:237–247, 2010.

    Article  CAS  Google Scholar 

  46. Zhang, Y., Y. Sun, X. Yang, J. Hilborn, A. Heerschap, and D. A. Ossipov. Injectable in situ forming hybrid iron oxide-hyaluronic acid hydrogel for magnetic resonance imaging and drug delivery. Macromol. Biosci. 14:1249–1259, 2014.

    Article  CAS  PubMed  Google Scholar 

  47. Zhong, Z., W. Thomlinson, D. Chapman, and D. Sayers. Implementation of diffraction-enhanced imaging experiments: at the NSLS and APS. Nucl. Instrum. Methods Phys. Res. Sect. A 450:556–567, 2000.

    Article  CAS  Google Scholar 

  48. Zhou W., K. Majidi and J. G. Brankov. Phase contrast imaging using a micro focus x-ray source. In: SPIE Optical Engineering + Applications. International Society for Optics and Photonics, 2014, p. 92070U-92070U-92078.

  49. Zhu, N., D. Chapman, D. Cooper, D. J. Schreyer, and X. Chen. X-ray diffraction enhanced imaging as a novel method to visualize low-density scaffolds in soft tissue engineering. Tissue Eng. Part C 17:1071–1080, 2011.

    Article  CAS  Google Scholar 

  50. Ziv, K., H. Nuhn, Y. Ben-Haim, L. S. Sasportas, P. J. Kempen, T. P. Niedringhaus, M. Hrynyk, R. Sinclair, A. E. Barron, and S. S. Gambhir. A tunable silk-alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35:3736–3743, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Banu Akar and Frederick Doe for staining the samples. This work was supported by grants from the Veterans Administration, National Science Foundation (IIS-1125412, CBET-1263994) and the National Institute of Health (R01EB009715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Brey.

Additional information

Associate Editor Agata Exner oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 2593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appel, A.A., Larson, J.C., Jiang, B. et al. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants. Ann Biomed Eng 44, 773–781 (2016). https://doi.org/10.1007/s10439-015-1482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1482-5

Keywords

Navigation