Skip to main content
Log in

In Vitro Comparison of Active and Passive Physiological Control Systems for Biventricular Assist Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The low preload and high afterload sensitivities of rotary ventricular assist devices (VADs) may cause ventricular suction events or venous congestion. This is particularly problematic with rotary biventricular support (BiVAD), where the Starling response is diminished in both ventricles. Therefore, VADs may benefit from physiological control systems to prevent adverse events. This study compares active, passive and combined physiological controllers for rotary BiVAD support with constant speed mode. Systemic (SVR) and pulmonary (PVR) vascular resistance changes and exercise were simulated in a mock circulation loop to evaluate the capacity of each controller to prevent suction and congestion and increase exercise capacity. All controllers prevented suction and congestion at high levels of PVR (900 dynes s cm−5) and SVR (3000 dynes s cm−5), however these events occurred in constant speed mode. The controllers increased preload sensitivity (0.198–0.34 L min−1 mmHg−1) and reduced afterload sensitivity (0.0001–0.008 L min−1 mmHg−1) of the VADs when compared to constant speed mode (0.091 and 0.072 L min−1 mmHg−1 respectively). The active controller increased pump speeds (400–800 rpm) and pump flow by 2.8 L min−1 during exercise, thus increasing exercise capacity. By reducing suction and congestion and by increasing exercise capacity, the control systems presented in this study may help increase quality of life of VAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aissaoui, N., M. Morshuis, M. Schoenbrodt, K. Hakim Meibodi, L. Kizner, J. Börgermann, and J. Gummert. Temporary right ventricular mechanical circulatory support for the management of right ventricular failure in critically ill patients. J. Thorac. Cardiovasc. Surg. 146:186–191, 2013.

    Article  PubMed  Google Scholar 

  2. Alomari, A. H., A. V. Savkin, P. J. Ayre, E. Lim, and N. H. Lovell. Sensorless estimation of inlet pressure in implantable rotary blood pump for heart failure patients. Electron. Lett. 46:481–483, 2010.

    Article  Google Scholar 

  3. AlOmari, A.-H. H., A. V. Savkin, M. Stevens, D. G. Mason, D. L. Timms, R. F. Salamonsen, and N. H. Lovell. Developments in control systems for rotary left ventricular assist devices for heart failure patients: a review. Physiol. Meas. 34:R1–R27, 2013.

    Article  PubMed  Google Scholar 

  4. Choi, S., J. E. Antaki, R. Boston, and D. Thomas. A sensorless approach to control of a turbodynamic left ventricular assist system. IEEE Trans. Control Syst. Technol. 9:473–482, 2001.

    Article  Google Scholar 

  5. Epstein, S. E., G. D. Beiser, M. Stampfer, B. F. Robinson, and E. Braunwald. Characterization of the circulatory response to maximal upright exercise in normal subjects and patients with heart disease. Circulation 35:1049–1062, 1967.

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira, A., J. R. Boston, and J. F. Antaki. A control system for rotary blood pumps based on suction detection. IEEE Trans. Biomed. Eng. 56:656–665, 2009.

    Article  PubMed  Google Scholar 

  7. Gaddum, N. R., D. L. Timms, and M. J. Pearcy. Optimizing the response from a passively controlled biventricular assist device. Artif. Organs 34:393–401, 2010.

    Article  PubMed  Google Scholar 

  8. Gaddum, N. R., D. L. Timms, M. Stevens, D. Mason, N. Lovell, and J. F. Fraser. Comparison of preload-sensitive pressure and flow controller strategies for a dual device biventricular support system. Artif. Organs 36:256–265, 2012.

    Article  PubMed  Google Scholar 

  9. Granegger, M., F. Moscato, F. Casas, G. Wieselthaler, and H. Schima. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function. Artif. Organs 36:691–699, 2012.

    Article  PubMed  Google Scholar 

  10. Gregory, S.D., M. Stevens, D. Timms, M. Pearcy (2011) Replication of the Frank-Starling response in a mock circulation loop. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., 2011, pp. 6825–6828.

  11. Gregory, S. D., M. J. Pearcy, and D. Timms. Passive control of a biventricular assist device with compliant inflow cannulae. Artif. Organs 36:683–690, 2012.

    Article  PubMed  Google Scholar 

  12. Gregory, S., E. Schummy, and J. Pauls. A compliant banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices. Artif. Organs 39:102–109, 2014.

    Article  PubMed  Google Scholar 

  13. Guazzi, M., and B. A. Borlaug. Pulmonary hypertension due to left heart disease. Circulation 126:975–990, 2012.

    Article  PubMed  Google Scholar 

  14. Hetzer, R., T. Krabatsch, A. Stepanenko, E. Hennig, and E. V. Potapov. Long-term biventricular support with the heartware implantable continuous flow pump. J. Heart Lung Transplant. 29:822–824, 2010.

    Article  PubMed  Google Scholar 

  15. Kirklin, J., D. Naftel, R. Kormos, L. Stevenson, F. Pagani, and M. Miller. Second INTERMACS annual report: more than 1000 primary left ventricular assist devices implants. J. Heart Lung Transplant. 29:1–10, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Klabunde, R. E. Cardiovascular Physiology Concepts. Baltimore: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  17. Korakianitis, T., and Y. Shi. Numerical comparison of hemodynamics with atrium to aorta and ventricular apex to aorta VAD support. ASAIO J. 53:537–548, 2007.

    Article  PubMed  Google Scholar 

  18. Lampert, B. C., C. Eckert, S. Weaver, A. Scanlon, K. Lockard, C. Allen, N. Kunz, C. Bermudez, J. K. Bhama, M. A. Shullo, R. L. Kormos, M. A. Dew, and J. J. Teuteberg. Blood pressure control in continuous flow left ventricular assist devices: efficacy and impact on adverse events. Ann. Thorac. Surg. 97:139–146, 2014.

    Article  PubMed  Google Scholar 

  19. McClean, D., J. Aragon, A. Jamali, S. Kar, J. Ritzema-Carter, R. Troughton, H. Krum, R. Doughty, W. T. Abraham, J. S. Whiting, and N. Eigler. Noninvasive calibration of cardiac pressure transducers in patients with heart failure: an aid to implantable hemodynamic monitoring and therapeutic guidance. J. Card. Fail. 12:568–576, 2006.

    Article  PubMed  Google Scholar 

  20. Noon, G. P., D. L. Morley, S. Irwin, S. V. Abdelsayed, R. J. Benkowski, and B. E. Lynch. Clinical experience with the MicroMed DeBakey ventricular assist device. Ann. Thorac. Surg. 71:S133–S138, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Reesink, K., A. Dekker, T. Van der Nagel, C. Beghi, F. Leonardi, P. Botti, Cicco G. De, R. Lorusso, F. Van der Veen, and J. Maessen. Suction due to left ventricular assist: implications for device control and management. Artif. Organs 31:542–549, 2007.

    Article  PubMed  Google Scholar 

  22. Salamonsen, R. F., D. G. Mason, and P. J. Ayre. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif. Organs 35:E47–E53, 2011.

    Article  PubMed  Google Scholar 

  23. Salamonsen, R. F., V. Pellegrino, J. F. Fraser, K. Hayes, D. Timms, N. H. Lovell, and C. Hayward. Exercise studies in patients with rotary blood pumps: cause, effects, and implications for starling-like control of changes in pump flow. Artif. Organs 37:695–703, 2013.

    Article  PubMed  Google Scholar 

  24. Santambrogio, L., T. Bianchi, M. Fuardo, F. Gazzoli, A. Braschi, M. Maurelli, and R. Veronesi. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact. Cardiovasc. Thorac. Surg. 5:379–382, 2006.

    Article  PubMed  Google Scholar 

  25. Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, R. C. Starling, L. Chen, A. J. Boyle, S. Chillcott, R. M. Adamson, M. S. Blood, M. T. Camacho, K. A. Idrissi, M. Petty, M. Sobieski, S. Wright, T. J. Myers, and D. J. Farrar. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transplant. 29:S1–S39, 2010.

    Article  PubMed  Google Scholar 

  26. Stevens, M. C., S. Wilson, A. Bradley, J. Fraser, and D. Timms. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach. Artif. Organs 38:766–774, 2014.

    Article  PubMed  Google Scholar 

  27. Strueber, M., A. L. Meyer, D. Malehsa, and A. Haverich. Successful use of the HeartWare HVAD rotary blood pump for biventricular support. J. Thorac. Cardiovasc. Surg. 140:936–937, 2010.

    Article  PubMed  Google Scholar 

  28. Tansley, G., S. Vidakovic, and J. Reizes. Fluid dynamic characteristics of the VentrAssist rotary blood pump. Artif. Organs 24:483–487, 2000.

    Article  CAS  PubMed  Google Scholar 

  29. Timms, D. L., S. D. Gregory, N. A. Greatrex, M. J. Pearcy, J. F. Fraser, and U. Steinseifer. A compact mock circulation loop for the in vitro testing of cardiovascular devices. Artif. Organs 35:384–391, 2011.

    Article  PubMed  Google Scholar 

  30. Troughton, R. W., J. Ritzema, N. L. Eigler, I. C. Melton, H. Krum, P. B. Adamson, S. Kar, P. K. Shah, J. S. Whiting, J. T. Heywood, S. Rosero, J. P. Singh, L. Saxon, R. Matthews, I. G. Crozier, and W. T. Abraham. Direct left atrial pressure monitoring in severe heart failure: long-term sensor performance. J. Cardiovasc. Transl. Res. 4:3–13, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vollkron, M., H. Schima, L. Huber, R. Benkowski, G. Morello, and G. Wieselthaler. Development of a suction detection system for axial blood pumps. Artif. Organs 28:709–716, 2004.

    Article  PubMed  Google Scholar 

  32. Vollkron, M., P. Voitl, J. Ta, G. Wieselthaler, and H. Schima. Suction events during left ventricular support and ventricular arrhythmias. J. Heart Lung Transplant. 26:819–825, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to recognize the financial assistance provided by The Prince Charles Hospital Foundation (MS2012-34 and NR2013-222), Griffith University and University of Queensland.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo P. Pauls.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauls, J.P., Stevens, M.C., Schummy, E. et al. In Vitro Comparison of Active and Passive Physiological Control Systems for Biventricular Assist Devices. Ann Biomed Eng 44, 1370–1380 (2016). https://doi.org/10.1007/s10439-015-1425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1425-1

Keywords

Navigation