Skip to main content

Advertisement

Log in

Mathematical Model of Oxygen Transport in Tuberculosis Granulomas

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pulmonary granulomas—the hallmark of Mycobacterium tuberculosis (MTB) infection—are dense cellular lesions that often feature regions of hypoxia and necrosis, partially due to limited transport of oxygen. Low oxygen in granulomas can impair the host immune response, while MTB are able to adapt and persist in hypoxic environments. Here, we used a physiologically based mathematical model of oxygen diffusion and consumption to calculate oxygen profiles within the granuloma, assuming Michaelis–Menten kinetics. An approximate analytical solution—using a priori and newly estimated parameters from experimental data in a rabbit model of tuberculosis—was able to predict the size of hypoxic and necrotic regions in agreement with experimental results from the animal model. Such quantitative understanding of transport limitations can inform future tuberculosis therapeutic strategies that may include adjunct host-directed therapies that facilitate oxygen and drug delivery for more effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Al Shammari, B., T. Shiomi, L. Tezera, M. K. Bielecka, V. Workman, T. Sathyamoorthy, F. Mauri, S. N. Jayasinghe, B. D. Robertson, J. D’Armiento, J. S. Friedland, and P. T. Elkington. The extracellular matrix regulates granuloma necrosis in tuberculosis. J. Infect. Dis. 212:463–473, 2015.

    Article  PubMed  Google Scholar 

  2. Araujo, R. P., and D. L. McElwain. A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66:1039–1091, 2004.

    Article  CAS  PubMed  Google Scholar 

  3. Arteel, G. E., R. G. Thurman, and J. A. Raleigh. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur. J. Biochem. 253:743–750, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Baish, J. W., T. Stylianopoulos, R. M. Lanning, W. S. Kamoun, D. Fukumura, L. L. Munn, and R. K. Jain. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl. Acad. Sci. U.S.A. 108:1799–1803, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boon, C., and T. Dick. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J. Bacteriol. 184:6760–6767, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boveris, A., L. E. Costa, J. J. Poderoso, M. C. Carreras, and E. Cadenas. Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann. N. Y. Acad. Sci. 899:121–135, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Casciari, J. J., S. V. Sotirchos, and R. M. Sutherland. Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151:386–394, 1992.

    Article  CAS  PubMed  Google Scholar 

  8. Chauhan, V. P., T. Stylianopoulos, Y. Boucher, and R. K. Jain. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2:281–298, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, J., A. T. Layton, and A. Edwards. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. Am. J. Physiol. Ren. Physiol. 297:F517–F536, 2009.

    Article  CAS  Google Scholar 

  10. Cronk, J., and R. W. Schubert. Michaelis-Menten-like kinetics in the Krogh tissue cylinder. Adv. Exp. Med. Biol. 180:499–509, 1984.

    Article  CAS  PubMed  Google Scholar 

  11. Datta, M., L. E. Via, W. S. Kamoun, C. Liu, W. Chen, G. Seano, D. M. Weiner, D. Schimel, K. England, J. D. Martin, X. Gao, L. Xu, C. E. Barry, 3rd, and R. K. Jain. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc. Natl. Acad. Sci. USA 112:1827–1832, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deakin, A. S. Model for the growth of a solid in vitro tumor. Growth 39:159–165, 1975.

    CAS  PubMed  Google Scholar 

  13. Dorhoi, A., S. T. Reece, and S. H. Kaufmann. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol. Rev. 240:235–251, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Durand, R. E., and J. A. Raleigh. Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res. 58:3547–3550, 1998.

    CAS  PubMed  Google Scholar 

  15. Dye, C., A. Bassili, A. L. Bierrenbach, J. F. Broekmans, V. K. Chadha, P. Glaziou, P. G. Gopi, M. Hosseini, S. J. Kim, D. Manissero, I. Onozaki, H. L. Rieder, S. Scheele, F. van Leth, M. van der Werf, and B. G. Williams. Measuring tuberculosis burden, trends, and the impact of control programmes. Lancet Infect. Dis. 8:233–243, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Ellner, J. J. Review: the immune response in human tuberculosis–implications for tuberculosis control. J. Infect. Dis. 176:1351–1359, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Fogler, H. S. Elements of Chemical Reaction Engineering. Upper Saddle River, NJ: Prentice Hall, 2006.

    Google Scholar 

  18. Golub, A. S., and R. N. Pittman. Oxygen dependence of respiration in rat spinotrapezius muscle in situ. Am. J. Physiol. Heart Circ. Physiol. 303:H47–H56, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grimes, D. R., A. G. Fletcher, and M. Partridge. Oxygen consumption dynamics in steady-state tumour models. R. Soc. Open Sci. 1:140080, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jain, R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47:3039–3051, 1987.

    CAS  PubMed  Google Scholar 

  21. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48:2641–2658, 1988.

    CAS  PubMed  Google Scholar 

  22. Jain, R. K. The next frontier of molecular medicine: delivery of therapeutics. Nat. Med. 4:655–657, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–633, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keren, I., S. Minami, E. Rubin, and K. Lewis. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100–e00111, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kiran, K. L., D. Jayachandran, and S. Lakshminarayanan. Mathematical modelling of avascular tumour growth based on diffusion of nutrients and its validation. Can. J. Chem. Eng. 87:732–740, 2009.

    Article  CAS  Google Scholar 

  27. Klinkenberg, L. G., L. A. Sutherland, W. R. Bishai, and P. C. Karakousis. Metronidazole lacks activity against Mycobacterium tuberculosis in an in vivo hypoxic granuloma model of latency. J. Infect. Dis. 198:275–283, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar, A., J. C. Toledo, R. P. Patel, J. R. Lancaster, Jr., and A. J. Steyn. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA 104:11568–11573, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McGoron, A. J., P. Nair, and R. W. Schubert. Michaelis-Menten kinetics model of oxygen consumption by rat brain slices following hypoxia. Ann. Biomed. Eng. 25:565–572, 1997.

    Article  CAS  PubMed  Google Scholar 

  30. Parandhaman, D. K., and S. Narayanan. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front. Cell. Infect. Microbiol. 4:31, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qutub, A. A., F. Mac Gabhann, E. D. Karagiannis, P. Vempati, and A. S. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28:14–31, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raleigh, J. A., D. P. Calkins-Adams, L. H. Rinker, C. A. Ballenger, M. C. Weissler, W. C. Fowler, Jr., D. B. Novotny, and M. A. Varia. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58:3765–3768, 1998.

    CAS  PubMed  Google Scholar 

  33. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12:352–366, 2012.

    CAS  PubMed  Google Scholar 

  34. Rhoades, E. R., R. E. Geisel, B. A. Butcher, S. McDonough, and D. G. Russell. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb) 85:159–176, 2005.

    Article  CAS  Google Scholar 

  35. Roose, T., S. J. Chapman, and P. K. Maini. Mathematical models of avascular tumor growth. Siam Rev. 49:179–208, 2007.

    Article  Google Scholar 

  36. Russell, D. G. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5:39–47, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Russell, D. G., C. E. Barry, 3rd, and J. L. Flynn. Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rustad, T. R., M. I. Harrell, R. Liao, and D. R. Sherman. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3:e1502, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rustad, T. R., A. M. Sherrid, K. J. Minch, and D. R. Sherman. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell. Microbiol. 11:1151–1159, 2009.

    Article  CAS  PubMed  Google Scholar 

  40. Saini, D. K., V. Malhotra, D. Dey, N. Pant, T. K. Das, and J. S. Tyagi. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 150:865–875, 2004.

    Article  CAS  PubMed  Google Scholar 

  41. Sakaguchi, I., N. Ikeda, M. Nakayama, Y. Kato, I. Yano, and K. Kaneda. Trehalose 6,6′-dimycolate (Cord factor) enhances neovascularization through vascular endothelial growth factor production by neutrophils and macrophages. Infect. Immun. 68:2043–2052, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakamoto, K. The pathology of Mycobacterium tuberculosis infection. Vet. Pathol. 49:423–439, 2012.

    Article  CAS  PubMed  Google Scholar 

  43. Schultz, D. S., and W. E. King. On the analysis of oxygen diffusion and reaction in biological systems. Math. Biosci. 83:179–190, 1987.

    Article  Google Scholar 

  44. Secomb, T. W., R. Hsu, M. W. Dewhirst, B. Klitzman, and J. F. Gross. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 25:481–489, 1993.

    Article  CAS  PubMed  Google Scholar 

  45. Stylianopoulos, T., and R. K. Jain. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 110:18632–18637, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Torres Filho, I. P., M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl. Acad. Sci. USA 91:2081–2085, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Truskey, G. A., F. Yuan, and D. F. Katz. Transport Phenomena in Biological Systems. Upper Saddle River, NJ: Prentice Hall, 2004.

    Google Scholar 

  48. Via, L. E., P. L. Lin, S. M. Ray, J. Carrillo, S. S. Allen, S. Y. Eum, K. Taylor, E. Klein, U. Manjunatha, J. Gonzales, E. G. Lee, S. K. Park, J. A. Raleigh, S. N. Cho, D. N. McMurray, J. L. Flynn, and C. E. Barry, 3rd. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76:2333–2340, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wayne, L. G. In vitro model of hypoxically induced nonreplicating persistence of Mycobacterium tuberculosis. Methods Mol. Med. 54:247–269, 2001.

    CAS  PubMed  Google Scholar 

  50. Wayne, L. G., and L. G. Hayes. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64:2062–2069, 1996.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wayne, L. G., and C. D. Sohaskey. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55:139–163, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. Wilson, D. F., and W. L. Rumsey. Factors modulating the oxygen dependence of mitochondrial oxidative phosphorylation. Adv. Exp. Med. Biol. 222:121–131, 1988.

    Article  CAS  PubMed  Google Scholar 

  53. Wilson, D. F., W. L. Rumsey, T. J. Green, and J. M. Vanderkooi. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263:2712–2718, 1988.

    CAS  PubMed  Google Scholar 

  54. Zhang, Y., W. Shi, W. Zhang, and D. Mitchison. Mechanisms of pyrazinamide action and resistance. Microbiol. Spectr. 2:1–12, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou, S., Z. Cui, and J. P. Urban. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum. 50:3915–3924, 2004.

    Article  PubMed  Google Scholar 

  56. Zumla, A. I., S. H. Gillespie, M. Hoelscher, P. P. Philips, S. T. Cole, I. Abubakar, T. D. McHugh, M. Schito, M. Maeurer, and A. J. Nunn. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect. Dis. 14:327–340, 2014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Jerry Meldon and Stephen Matson for their insightful comments, and Drs. Vasileios Askoxylakis, Dai Fukumura, Giorgio Seano, Triantafyllos Stylianopoulos, and Joshua Tam for their assistance in manuscript editing. We would like to acknowledge Kathleen England, Daniel Schimel, and Danielle Weiner (Tuberculosis Research Section, Laboratory of Clinical Infectious Disease, National Institutes of Health/National Institute of Allergy and Infectious Diseases) for their technical assistance in the previously performed animal studies. Thanks to Carolyn Smith (Edwin L. Steele Laboratories, Massachusetts General Hospital/Harvard Medical School) for her support in the immunohistochemistry studies. This study was supported in part by Grants from the Bill and Melinda Gates Foundation (to R.K.J.), through the Grand Challenges in Global Health Program to Douglas Young, Imperial College (to C.E.B.), and from the Intramural Research Program of the NIH, NIAID (to C.E.B).

Conflict of Interest

R.K.J. received consultant fees from Xtuit, Ophthotech, SPARC, and SynDevRx. R.K.J. owns equity in Enlight, Ophthotech, SynDevRx, and XTuit and serves on the Board of Directors of XTuit and the Boards of Trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, Tekla Healthcare Opportunities Fund and Tekla World Healthcare Fund. No reagents or funding from these companies were used in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Jain.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, M., Via, L.E., Chen, W. et al. Mathematical Model of Oxygen Transport in Tuberculosis Granulomas. Ann Biomed Eng 44, 863–872 (2016). https://doi.org/10.1007/s10439-015-1415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1415-3

Keywords

Navigation