Skip to main content

Advertisement

Log in

siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Leukocyte recruitment plays a key role in chronic inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, and cancer. Leukocyte rolling and arrest are mediated in part by the temporally-regulated surface expression of vascular cell adhesion molecule-1 (VCAM1) on endothelial cells (ECs). In this paper, we engineered a pH-responsive vehicle comprised of 30 mol% dimethylaminoethyl methacrylate (30D) and 70 mol% hydroxyethyl methacrylate (70H) to encapsulate, protect, and deliver VCAM1 small interfering RNA (siRNA). The ability of siRNA to reduce VCAM1 gene expression is in direct opposition to its activation by cytokines. At 12 h post-activation, VCAM1 gene knockdown was 90.1 ± 7.5% when delivered via 30D/70H nanoparticles, which was on par with a leading commercial transfection agent. This translated into a 68.8 ± 6.7% reduction in the surface density of VCAM1 on cytokine-activated ECs. The pH-responsive delivery of VCAM1 siRNA efficiently reduced temporal surface protein expression, which may be used to avert leukocyte recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

VCAM1:

Vascular cell adhesion molecule-1

ECs:

Endothelial cells

30D:

30 mol% dimethylaminoethyl methacrylate

70H:

70 mol% hydroxyethyl methacrylate

siRNA:

Small interfering RNA

ICAM1:

Intercellular cell adhesion molecule-1

TNFα :

Tumor necrosis factor-α

DMAEMA:

Dimethylaminoethyl methacrylate

HEMA:

Hydroxyethyl methacrylate

IL-1α :

Interleukin 1α

TEM:

Transmission electron microscopy

PECAM1 or CD31:

Platelet endothelial cell adhesion molecule or cluster of differentiation 31

TEGDMA:

Tetraethylene glycol dimethacrylate

References

  1. Abid Hussein, M. N., E. W. Meesters, N. Osmanovic, F. P. Romijn, R. Nieuwland, and A. Sturk. Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. J. Thromb. Haemost. 1:2434–2443, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Aleku, M., P. Schulz, O. Keil, A. Santel, U. Schaeper, B. Dieckhoff, et al. Atu027; a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 68:9788–9798, 2008.

    Article  CAS  PubMed  Google Scholar 

  3. Chang, R. S., M. S. Suh, S. Kim, G. Shim, S. Lee, S. S. Han, et al. Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA. Biomaterials 32:9785–9795, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Cybulsky, M. I., K. Iiyama, H. Li, S. Zhu, M. Chen, M. Iiyama, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107:1255–1262, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davidson, B. L., and P. B. J. McCray. Current prospects for RNA interference-based therapies. Nat. Rev. Genet. 12:329–340, 2011.

    Article  CAS  PubMed  Google Scholar 

  6. Fattal, E., P. Couvreur, and C. Dubernet. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv. Drug Deliv. Rev. 56:931–946, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Hiroshi, M., G. Y. Bharate, and J. Daruwalla. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 71(3):409–419, 2009.

    Article  Google Scholar 

  9. Huo, Y., C. Weber, S. B. Forlow, M. Sperandio, J. Thatte, M. Mack, et al. The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. J. Clin. Invest. 108:1307–1314, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaksonen, M., C. P. Toret, and D. G. Drubin. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 7:404–414, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Kowalski, P. S., N. G. Leus, G. L. Scherphof, M. H. Ruiters, J. A. Kamps, and G. Molema. Targeted siRNA delivery to diseased microvascular endothelial cells: cellular and molecular concepts. IUBMB Life 63:648–658, 2011.

    Article  CAS  PubMed  Google Scholar 

  12. Larocque, D., G. Fragoso, J. Huang, W. E. Mushynski, M. Loignon, S. Richard, et al. The QKI-6 and QKI-7 RNA binding proteins block proliferation and promote Schwann cell myelination. PLoS ONE 4:e5867, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee, H., D. Sung, M. Veerapandian, K. Yun, and S. W. Seo. PEGylated polyethyleneimine grafted silica nanoparticles: enhanced cellular uptake and efficient siRNA delivery. Anal. Bioanal. Chem. 400:535–545, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Leuschner, F., P. Dutta, R. Gorbatov, T. I. Novobrantseva, J. S. Donahoe, G. Courties, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29:1005–1010, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murthy, N., J. Campbell, N. Fausto, A. S. Hoffman, and P. S. Stayton. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug. Chem. 14:412–419, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Natarajan, P., and C. P. Cannon. Could direct inhibition of inflammation be the “next big thing” in treating atherosclerosis? Arterioscler. Thromb. Vasc. Biol. 30:2081–2083, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Navarro, G., R. R. Sawant, S. Essex, C. TrosdeIlarduya, and V. P. Torchilin. Phospholipid-polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery. Drug Deliv. Transl. Res. 1:25–33, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oishi, M., Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Ovcharenko, D., R. Jarvis, S. Hunicke-Smith, K. Kelnar, and D. Brown. High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11:985–993, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pecot, C. V., G. A. Calin, R. L. Coleman, G. Lopez-Berestein, and A. K. Sood. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11:59–67, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peer, D., E. J. Park, Y. Morishita, C. V. Carman, and M. Shimaoka. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319:627–630, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santel, A., M. Aleku, O. Keil, J. Endruschat, V. Esche, G. Fisch, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 13:1222–1234, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X. L., S. Ramusovic, T. Nguyen, and Z. R. Lu. Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery. Bioconjug. Chem. 18:2169–2177, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Weber, C., and H. Noels. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17:1410–1422, 2011.

    Article  CAS  PubMed  Google Scholar 

  25. Wójciak-Stothard, B., A. Entwistle, R. Garg, and A. J. Ridley. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J. Cell. Physiol. 176:150–165, 1998.

    Article  PubMed  Google Scholar 

  26. Yoo, J. W., N. Doshi, and S. Mitragotri. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: effect of particle geometry. Macromol. Rapid Commun. 31:142–148, 2010.

    CAS  PubMed  Google Scholar 

  27. You, J. O., and D. T. Auguste. Feedback-regulated paclitaxel delivery based on poly(N, N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles. Biomaterials 29:1950–1957, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. You, J. O., and D. T. Auguste. Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer. Nano Lett. 9:4467–4473, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. You, J. O., and D. T. Auguste. The effect of swelling and cationic character on gene transfection by pH-sensitive nanocarriers. Biomaterials 31:6859–6866, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the National Science Foundation under NSF Award No. DMR 1406271. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by NSF Award No. ECS-0335765. CNS is part of the Faculty of Arts and Sciences at Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra T. Auguste.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, T.T., You, JO. & Auguste, D.T. siRNA Delivery Impedes the Temporal Expression of Cytokine-Activated VCAM1 on Endothelial Cells. Ann Biomed Eng 44, 895–902 (2016). https://doi.org/10.1007/s10439-015-1364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1364-x

Keywords

Navigation