Skip to main content
Log in

Effect of Transmural Transport Properties on Atheroma Plaque Formation and Development

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We propose a mathematical model of atheroma plaque initiation and early development in coronary arteries using anisotropic transmural diffusion properties. Our current approach is on the process on plaque initiation and intimal thickening rather than in severe plaque progression and rupture phenomena. The effect of transport properties, in particular the anisotropy of diffusion properties of the artery, on plaque formation and development is investigated using the proposed mathematical model. There is not a strong influence of the anisotropic transmural properties on LDL, SMCs and collagen distribution and concentrations along the artery. On the contrary, foam cells distribution strongly depends on the value of the radial diffusion coefficient of the substances \(D^{\text{r}}\) and the ratio \(\gamma =D^z_{\text{i,w}}/D^{\text{r}}_{\text{i,w}}\). Decreasing \(\gamma\) or diffusion coefficients ratio means a higher concentration of the foam cells close to the intima. Due to the fact that foam cells concentration is associated to the necrotic core formation, the final distribution of foam cells is critical to evolve into a vulnerable or fibrotic plaque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ai, L., and K. Vafai. A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat Mass Transf. 49:1568–1591, 2006.

    Article  CAS  Google Scholar 

  2. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392:565–568, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Baldwin, A. L., L. M. Wilson, I. Gradus-Pizlo, R. Wilensky, and K. March. Effect of atherosclerosis on transmural convection and arterial ultrastructure. Implications for local intravascular drug delivery. Arterioscler. Thromb. 17:3365–3375, 1997.

    Article  CAS  Google Scholar 

  4. Budu-Grajdeanu, P., R. C. Schugart, A. Friedman, C. Valentine, A. K. Agarwal, and B. H. Rovin. A mathematical model of venous neointimal hyperplasia formation. Theor. Biol. Med. Model. 1:5–2, 2008.

    Google Scholar 

  5. Bulelzai, M. A. K. and Johan L. A. Dubbeldam. Long time evolution of atherosclerotic plaques. J. Theor. Biol. 297:1–10, 2012.

    Article  Google Scholar 

  6. Calvez V., A. Ebde, N. Meunier, and A. Raoult. Mathematical modelling of the atherosclerotic plaque formation. ESAIM Proc. 28:1–12, 2009.

  7. Cancel, L. M., A. Fitting, and J. M. Tarbell. In vitro study of LDL transport under pressurized (convective) conditions. Am. J. Physiol. Heart Circ. Physiol. 293:126–132, 2007.

    Article  Google Scholar 

  8. Cavaillon, J. M. Cytokines and macrophages. Biomed. Pharmacother. 48:445–453, 1994.

    Article  CAS  PubMed  Google Scholar 

  9. Chamley-Campbell, J. H., G. R. Campbell, and Ross R. Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J. Cell Biol. 89:379–383, 1981.

    Article  CAS  PubMed  Google Scholar 

  10. Chang, C. L. Lipoprotein lipase in the arterial wall: regulation by dietary fatty acids. PhD thesis, Columbia University, 2011.

  11. Chatzizisis, Y. S., A. P. Antoniadis, J. J. Wentzel, and G. D. Giannoglou. Vulnerable plaque: the biomechanics of matter. Arterioscler 236:351–352, 2014.

    Article  CAS  Google Scholar 

  12. Chung, S. and K. Vafai. Low-density lipoprotein transport within a multi-layered arterial wall. Effect of the atherosclerotic plaque/stenosis. J. Biomech. 46:574–585, 2013.

    Article  PubMed  Google Scholar 

  13. Cilla, M., E. Peña, and M. A. Martínez. Mathematical modelling of atheroma plaque formation and development in coronary arteries. J. R. Soc. Interface 11:201308661–2013086616, 2014.

    Google Scholar 

  14. Curmi, P. A., L. Juan, and A. Tedgui. Effect of transmural pressure on low density lipoprotein and albumin transport and distribution across the intact arterial wall. Circ. Res. 66:1692–1702, 1990.

    Article  CAS  PubMed  Google Scholar 

  15. Curry, F. E.. Mechanics and Thermodynamics of Transcapillary Exchange. Handbook of Physiology. The Cardiovascular System. Microcirculation. Bethesda, MD: American Physiological Society, 1984.

    Google Scholar 

  16. Dabagh, M., P. Jalali and J.M. Tarbell. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension.Am. J. Physiol. Heart Circ. Physiol. 297(3):H983–H996, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Davignon, J. and P. Ganz. Role of endothelial dysfunction in atherosclerosis. Circulation, 109:27–32, 2004.

    Article  Google Scholar 

  18. Esterbauer, H., G. Striegl, H. Puhl, and M. Rotheneder. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 6:67–75, 1989.

    Article  CAS  PubMed  Google Scholar 

  19. Finn, A. V., M. Nakano, J. Narula, F. D. Kolodgie, and R. Virmani. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. 30:1282–1292, 2010.

    Article  CAS  Google Scholar 

  20. Griffin, C. A., L. H. Apponi, K. K. Long, and G. K. Pavlath. Chemokine expression and control of muscle cell migration during myogenesis. J. Cell Sci. 123:3052–3060, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Halim-Khan, F. The Elements of Immunology. New Delhi: Pearson Education India, 2009.

  22. Huang, Y., D. Rumschitzki, S. Chien, and S. Weinbaum. A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. Adv. Biol. Heat Mass Transf. HTD 231:81–92, 1992.

    Google Scholar 

  23. Huang, Z. J. and J. M. Tarbell. Numerical simulation of mass transfer in porous media of blood vessel walls. Am. J. Physiol. Heart Circ. Physiol. 273:464–477, 1997.

    Google Scholar 

  24. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer-Verlag, 2002.

    Book  Google Scholar 

  25. Hwang, C. W., D. Wu, and E. R. Edelman. Physiological transport forces govern drugdistribution for stent based delivery. Circulation 104(7):660–605, 2001.

    Google Scholar 

  26. Iliceto, S., V. Marangelli, C. Memmola, and P. Rizzon. Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-dipyridamole-induced coronary vasodilation. Circulation 83:61–69, 1991.

    Article  CAS  PubMed  Google Scholar 

  27. Kedem, O. and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27:229–246, 1958.

    Article  CAS  PubMed  Google Scholar 

  28. Khakpour, M. and K. Vafai. Critical assessment of arterial transport models. J. Heat Mass Transf. 51(3–4):807–822, 2008.

    Article  CAS  Google Scholar 

  29. Khaled, A. R. A. and K. Vafai. The role of porous media on modeling flow and heat transfer in biological tissues. J. Heat Mass Transf. 46:4989–5003, 2003.

    Article  Google Scholar 

  30. Khamdaengyodtai, P., K. Vafai, P. Sakulchangsatjatai, and P. Terdtoon. Effects of pressure on arterial failure. J. Biomech. 45:2577–2588, 2012.

    Article  PubMed  Google Scholar 

  31. Krombach, F., S. Münzing, A. M. Allmeling, J. T. Gerlach, J. Behr, and M. Dörger. Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect 105:1261–1263, 1997.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Krstic, R. V. Human microscopic anatomy: an atlas for students of medicine and biology. Berlin: Springer-Verlag, 1997.

  33. Kruth, H. S., W. Huang, I. Ishii, and W. Y. Zhang. Macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem. 277:34573–34580, 2002.

    Article  CAS  PubMed  Google Scholar 

  34. Lee, R. T. and P. Libby. The unstable atheroma. Arterioscler. Thromb. 17:1859–1867, 1997.

    Article  CAS  Google Scholar 

  35. Levin, A. D., N. Vukmirovic, C. W. Hwang, and E. R. Edelman. Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proc. Natl. Acad. Sci. USA 101(25):9463–9467, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lloyd-Jones, D. and the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119:21–181, 2009.

  37. Majno, G. and I. Joris. Cells, Tissues and Disease: Principles of General Pathology. Cambridge, MA: Blackwell Science, 1996.

    Google Scholar 

  38. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(1):2035–2042, 1999.

    Article  CAS  Google Scholar 

  39. Martini, F. H. Anatomy and Physiology. Chapter 10: Muscle Tissue. Upper Saddle River, NJ: Prentice Hall, 1999.

  40. Meyer, G., R. Merval, and A. Tedgui. Effects of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ. Res. 79:532–540, 1996.

    Article  CAS  PubMed  Google Scholar 

  41. Milnor, W. R. Hemodynamics. 2nd Edition. Baltimore, MD: Williams and Wilkins, 1989.

    Google Scholar 

  42. Nakanoa, A., M. Minamiyamab, and J. Sekic. The three-dimensional structure of vascular smooth muscle cells: a confocal laser microscopic study of rabbit mesenteric arterioles. Asian Biomed.1:77–86, 2007.

  43. Ogunrinade, O., G. T. Kameya, and G. A. Truskey. Effect of fluid shear stress on the permeability of the arterial endothelium. Ann. Biomed. Eng. 30:430–446, 2002.

    Article  PubMed  Google Scholar 

  44. Olgac, U., V. Kurtcuoglu, and D. Poulikakos. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Am. J. Physiol. Heart Circ. Physiol. 294(2):909–919, 2008.

    Article  Google Scholar 

  45. Petty, H. R., L. M. Smith, D. T. Fearont, and H. M. McConnell. Lateral distribution and diffusion of the C3b receptor of complement, HLA antigens, and lipid probes in peripheral blood leukocytes. PNAS 77(11):6587–6591, 1980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Prosi, M., P. Zunino, K. Perktold, and A. Quarteroni. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38:903–917, 2005.

    Article  CAS  PubMed  Google Scholar 

  47. Sáez, P., E. Peña, M. A. Martínez, and E. Kuhl. Mathematical modeling of collagen turnover in biological tissue. J. Math. Biol. 67:1765–1793, 2013.

    Article  PubMed  Google Scholar 

  48. Schwenke, D. C. and T.E. Carew. Initiation of atherosclerotic lesions in cholesterol-fed rabbits, II: selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908–918, 1989.

    Article  CAS  PubMed  Google Scholar 

  49. Shanahan, C. M. and P. L. Weissberg. Smooth muscle cell phenotypes in atherosclerotic lesions. Curr. Opin. Lipidol. 10:507–513, 1999.

    Article  CAS  PubMed  Google Scholar 

  50. Siogkas, P., A. Sakellarios, T. P. Exarchos, L. Athanasiou, E. Karvounis, K. Stefanou, E. Fotiou, D. I. Fotiadis, K. K. Naka, L. K. Michalis, N. Filipovic, and O. Parodi. Multiscale-patient-specific artery and atherogenesis models. IEEE Trans. Biomed. Eng. 58:3464–3468, 2011.

    Article  CAS  PubMed  Google Scholar 

  51. Slager, C. J., J. J. Wentzel, F. J. Gijsen, J. C. Schuurbiers, A. C. Van der Wal, A. F. Van der Steen, and P. W. Serruys. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med. 2:401–407, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Stangeby, D. K. and C. R. Ethier. Computational analysis of coupled blood-wall arterial LDL transport. ASME J. Biomech. Eng. 124:1–8, 2002b.

    Article  Google Scholar 

  53. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.

    Article  CAS  PubMed  Google Scholar 

  54. Tedgui, A. and M. J. Lever. Filtration through damaged and undamaged rabbit thoracic aorta. Am. J. Physiol. Heart Circ. Physiol. 247:784–791, 1984.

    Google Scholar 

  55. VanEpps, J. S. and D. A. Vorp. Mechanopathobiology of atherogenesis: a review. J. Surg. Res. 142:202–217, 2007.

    Article  CAS  PubMed  Google Scholar 

  56. Vargas, C. B., F. F. Vargas, J. G. Pribyl, and P. L. Blackshear. Hydraulic conductivity of the endothelial and outer layers of the rabbit aorta. Am. J. Physiol. Heart Circ. Physiol. 236:53–60, 1979.

    Google Scholar 

  57. Wang, J. C., S. L. Normand, L. Mauri, and R. E. Kuntz. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 110(3):278–284, 2004.

    Article  PubMed  Google Scholar 

  58. Weinbaum, S., G. Tzeghai, P. Ganatos, R. Pfeffer, and Chien S. Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am. J. Physiol. Heart Circ. Physiol. 248:945–960, 1985.

  59. Yang, N. and K. Vafai. Modeling of low-density lipoprotein (LDL) transport in the artery. Effects of hypertension. J. Heat Mass Transf. 49:850–867, 2006.

    Article  CAS  Google Scholar 

  60. Yang, N. and K. Vafai. Low-density lipoprotein (LDL) transport in an artery—a simplified analytical solution. J. Heat Mass Transf. 51:497–505, 2008.

    Article  CAS  Google Scholar 

  61. Yuan, F., S. Chien, and S. Weinbaum. A new view of convective–diffusive transport processes in the arterial intima. ASME J. Biomech. Eng. 113:314–329, 1991.

    Article  CAS  Google Scholar 

  62. Zahedmanesh, H., H. Van Oosterwyck, and C. Lally. A multi-scale mechanobiological model of in-stent restenosis: decipheringthe role of matrix metalloproteinase and extracellular matrix changes. Comput. Methods Biomech. Biomed. Eng., 2012. doi:10.1080/10255842.2012.716830.

    Google Scholar 

  63. Zhao, B., Y. Li, C. Buono, S. W. Waldo, N. L. Jones, M. Mori, and H. S. Kruth. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF). J. Biol. Chem. 281:15757–15762, 2006.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, W., C. A. Oskeritzian, A. L. Pozez, and L. B. Schwartz. Cytokine production by skin-derived mast cells: endogenous proteases are responsible for degradation of cytokines. J. Immunol. 175(4):2635–2642, 2005.

    Article  CAS  PubMed  Google Scholar 

  65. Zlotnik, A. and O. Yoshie. Chemokines: a new classification system and their role in immunity. Immunity 12:121–127, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Spanish Ministry of Economy and Competitiveness through research projects DPI2013-44391; and the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative.

Conflict of interest

Neither author has a financial or proprietary interest in any material or method mentioned. All authors read and approved the final manuscript. The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peña.

Additional information

Associator editor Gerhard A. Holzapfel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilla, M., Martínez, M.A. & Peña, E. Effect of Transmural Transport Properties on Atheroma Plaque Formation and Development. Ann Biomed Eng 43, 1516–1530 (2015). https://doi.org/10.1007/s10439-015-1299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1299-2

Keywords

Navigation