Skip to main content
Log in

Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Validation is a critical step in finite element model (FEM) development. This study focuses on the validation of the Global Human Body Models Consortium full body average male occupant FEM in five localized loading regimes—a chest impact, a shoulder impact, a thoracoabdominal impact, an abdominal impact, and a pelvic impact. Force and deflection outputs from the model were compared to experimental traces and corridors scaled to the 50th percentile male. Predicted fractures and injury severity measures were compared to evaluate the model’s injury prediction capabilities. The methods of ISO/TS 18571 were used to quantitatively assess the fit of model outputs to experimental force and deflection traces. The model produced peak chest, shoulder, thoracoabdominal, abdominal, and pelvis forces of 4.8, 3.3, 4.5, 5.1, and 13.0 kN compared to 4.3, 3.2, 4.0, 4.0, and 10.3 kN in the experiments, respectively. The model predicted rib and pelvic fractures related to Abbreviated Injury Scale scores within the ranges found experimentally all cases except the abdominal impact. ISO/TS 18571 scores for the impacts studied had a mean score of 0.73 with a range of 0.57–0.83. Well-validated FEMs are important tools used by engineers in advancing occupant safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Barbat, S., Y. Fu, Z. Zhan, R. J. Yang, and C. Gehre. Objective rating metric for dynamic systems. In: Enhanced Safety of Vehicles, Seoul, Republic of Korea, 2013.

  2. Beillas, P., Y. Lafon, and F. W. Smith. The effects of posture and subject-to-subject variations on the position, shape and volume of abdominal and thoracic organs. Stapp Car Crash J. 53:127–154, 2009.

    PubMed  Google Scholar 

  3. Bouquet, R., M. Ramet, F. Bermond, Y. Caire, Y. Talantikite, S. Robin, and E. Voiglio. Pelvis human response to lateral impact. In: 16th International Technical Conference on the Enhanced Safety of Vehicles, Windsor, ON, Canada, 1998, pp. 1665–1686.

  4. Bouquet, R., M. Ramet, F. Bermond, and D. Cesari. Thoracic and pelvis human response to impact. In: Proceedings: International Technical Conference on the Enhanced Safety of Vehicles, 1995, pp. 100–109.

  5. Budyn, E., T. Hoc, and J. Jonvaux. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput. Mech. 42:579–591, 2008.

    Article  Google Scholar 

  6. DeWit, J. A., and D. S. Cronin. Cervical spine segment finite element model for traumatic injury prediction. J. Mech. Behav. Biomed. Mater. 10:138–150, 2012.

    Article  PubMed  Google Scholar 

  7. Eppinger, R. H. Prediction of thoracic injuries using measurable experimental parameters. In: Proceedings of the Sixth International Technical Conference on the Enhanced Safety of Vehicles (ESV), 1976.

  8. Fice, J. B., D. S. Cronin, and M. B. Panzer. Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39:2152–2162, 2011.

    Article  PubMed  Google Scholar 

  9. Gayzik, F. S., J. J. Hoth, M. Daly, J. W. Meredith, and J. D. Stitzel. A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography. Stapp Car Crash J. 51:189–209, 2007.

    PubMed  Google Scholar 

  10. Gayzik, F. S., D. M. Moreno, C. P. Geer, S. D. Wuertzer, R. S. Martin, and J. D. Stitzel. Development of a full body cad dataset for computational modeling: a multi-modality approach. Ann. Biomed. Eng. 39:2568–2583, 2011.

    Article  CAS  PubMed  Google Scholar 

  11. Gayzik, F. S., M. Yu, K. A. Danelson, D. E. Slice, and J. D. Stitzel. Quantification of age-related change of the human rib cage through geometric morphometrics. J. Biomech. 41:1545–1554, 2008.

    Article  PubMed  Google Scholar 

  12. GHBMC. Ghbmc M50 Users Manual, 2014.

  13. Hardy, W. N., L. W. Schneider, and S. W. Rouhana. Abdominal impact response to rigid-bar, seatbelt, and airbag loading. Stapp Car Crash J. 45:1–32, 2001.

    CAS  PubMed  Google Scholar 

  14. Hayes, A. R., F. S. Gayzik, D. P. Moreno, R. S. Martin, and J. D. Stitzel. Comparison of organ location, morphology, and rib coverage of a midsized male in the supine and seated positions. Comput. Math. Methods Med. 2013:419821, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hayes, A. R., N. A. Vavalle, D. P. Moreno, J. D. Stitzel, and F. S. Gayzik. Validation of simulated chestband data in frontal and lateral loading using a human body finite element model. Traffic Inj. Prev. 15:181–186, 2014.

    Article  PubMed  Google Scholar 

  16. Hertz, E. A note on the head injury criterion (Hic) as a predictor of the risk of skull fracture. In: Proceedings: Association for the Advancement of Automotive Medicine Annual Conference, Vol. 37, 1993, pp. 303–312.

  17. ISO. Iso Tr 9790: Road Vehicles—Anthropomorphic Side Impact Dummy—Lateral Impact Response Requirements to Assess the Biofidelity of the Dummy, 1999.

  18. Kim, Y. H., J. E. Kim, and A. W. Eberhardt. A new cortical thickness mapping method with application to an in vivo finite element model. Comput. Methods Biomech. Biomed. Eng. 17:997–1001, 2012.

    Article  Google Scholar 

  19. Kim, Y. H., J. E. Kim, and A. Eberhardt, Finite element simulation of pelvic fractures in side impacts. In: ASME Summer Bioengineering Conference, Fajardo, PR, 2012.

  20. Koh, S. W., J. M. Cavanaugh, M. J. Mason, S. A. Petersen, D. R. Marth, S. W. Rouhana, and J. H. Bolte. Shoulder injury and response due to lateral glenohumeral joint impact: an analysis of combined data. Stapp Car Crash J. 49:291–322, 2005.

    PubMed  Google Scholar 

  21. Kroell, C., D. Schneider, and A. Nahum. Impact tolerance and response of the human thorax. Stapp Car Crash J. 15:710851, 1971.

    Google Scholar 

  22. Kroell, C. K., D. C. Schneider, and A. M. Nahum. Impact Tolerance and Response of the Human Thorax Ii, Vol. 741187, SAE Technical Paper, 1974.

  23. Kuppa, S., J. Wang, M. Haffner, and R. Eppinger. Lower extremity injuries and associated injury criteria. In: 17th ESV Conference, Paper, 2001.

  24. Lebarbé, M., and P. Petit. New biofidelity targets for the thorax of a 50th percentile adult male in frontal impact. In: 2012 International IRCOBI Conference on the Biomechanics of Impact. Dublin, Ireland, 2012, pp. 856–870.

  25. Li, Z., M. W. Kindig, J. R. Kerrigan, C. D. Untaroiu, D. Subit, J. R. Crandall, and R. W. Kent. Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study. J. Biomech. 43:228–234, 2010.

    Article  PubMed  Google Scholar 

  26. Li, Z., M. W. Kindig, D. Subit, and R. W. Kent. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction. Med. Eng. Phys. 32:998–1008, 2010.

    Article  PubMed  Google Scholar 

  27. Mao, H., L. Zhang, B. Jiang, V. V. Genthikatti, X. Jin, F. Zhu, R. Makwana, A. Gill, G. Jandir, and A. Singh. Development of a finite element human head model partially validated with thirty five experimental cases. J. Biomech. Eng. 135:111002, 2013.

    Article  PubMed  Google Scholar 

  28. Mattucci, S. F., J. A. Moulton, N. Chandrashekar, and D. S. Cronin. strain rate dependent properties of younger human cervical spine ligaments. J. Mech. Behav. Biomed. Mater. 10:216–226, 2012.

    Article  PubMed  Google Scholar 

  29. Mattucci, S. F., J. A. Moulton, N. Chandrashekar, and D. S. Cronin. Strain rate dependent properties of human craniovertebral ligaments. J. Mech. Behav. Biomed. Mater. 23:71–79, 2013.

    Article  PubMed  Google Scholar 

  30. Mertz, H. J., P. Prasad, and A. L. Irwin. Injury Risk Curves for Children and Adults in Frontal and Rear Collisions. SAE Technical Paper, 1997.

  31. Park, G., T. Kim, J. R. Crandall, C. Arregui-Dalmases, and J. Luzon-Narro. Comparison of kinematics of Ghbmc to Pmhs on the side impact condition. In: International Research Council on Biomechanics of Injury, Gothenburg, Sweden, 2013.

  32. SAE. Instrumentation for Impact Test—Part 1: Electronic Instrumentation, Vol. J211/1. Warrendale, PA: Society of Automotive Engineers, 2014.

  33. Shin, J., and C. Untaroiu. Biomechanical and injury response of human foot and ankle under complex loading. J. Biomech. Eng. 135:101008, 2013.

    Article  PubMed  Google Scholar 

  34. Soni, A., and P. Beillas. Modelling hollow organs for impact conditions: a simplified case study. Comput. Methods Biomech. Biomed. Eng. 18:730–739, 2015.

    Article  Google Scholar 

  35. Stitzel, J. D., P. D. Kilgo, A. A. Weaver, R. S. Martin, K. L. Loftis, and J. W. Meredith. Age thresholds for increased mortality of predominant crash induced thoracic injuries. Annu. Proc. Assoc. Adv. Automot. Med. 54:41–50, 2010.

    Google Scholar 

  36. Takhounts, E. G., M. J. Craig, K. Moorhouse, J. McFadden, and V. Hasija. Development of brain injury criteria (Bric). Stapp Car Crash J. 57:243–266, 2013.

    PubMed  Google Scholar 

  37. Trosseille, X., P. Baudrit, T. Leport, and G. Vallancien. Rib Cage Strain Pattern as a Function of Chest Loading Configuration, SAE Technical Paper, 2008.

  38. Untaroiu, C. D., N. Yue, and J. Shin. A finite element model of the lower limb for simulating automotive impacts. Ann. Biomed. Eng. 41:513–526, 2013.

    Article  PubMed  Google Scholar 

  39. Ural, A., and S. Mischinski. Multiscale modeling of bone fracture using cohesive finite elements. Eng. Fract. Mech. 103:141–152, 2013.

    Article  Google Scholar 

  40. Vavalle, N. A., B. C. Jelen, D. P. Moreno, J. D. Stitzel, and F. S. Gayzik. An evaluation of objective rating methods for full-body finite element model comparison to PMHS tests. Traffic Inj. Prev. 14:S87–S94, 2013.

    Article  PubMed  Google Scholar 

  41. Vavalle, N. A., D. P. Moreno, A. C. Rhyne, J. D. Stitzel, and F. S. Gayzik. Lateral impact validation of a geometrically accurate full body finite element model for blunt injury prediction. Ann. Biomed. Eng. 41:497–512, 2013.

    Article  PubMed  Google Scholar 

  42. Vavalle, N. A., S. L. Schoell, A. A. Weaver, J. D. Stitzel, and F. S. Gayzik. Application of radial basis function methods in the development of a 95th percentile male seated fea model. Stapp Car Crash J. 58:361–384, 2014.

    PubMed  Google Scholar 

  43. Vavalle, N. A., A. B. Thompson, A. R. Hayes, D. P. Moreno, J. D. Stitzel, and F. S. Gayzik. Investigation of the mass distribution of a detailed seated male finite element model. J. Appl. Biomech. 30:471–476, 2014.

    Article  PubMed  Google Scholar 

  44. Viano, D. C. Biomechanical responses and injuries in blunt lateral impact. Stapp Car Crash J. 33:113–142, 1989.

    Google Scholar 

  45. Weaver, A. A., S. L. Schoell, and J. D. Stitzel. Morphometric analysis of variation in the ribs with age and sex. J. Anat. 225:246–261, 2014.

    Article  PubMed  Google Scholar 

  46. Yanaoka, T., and Y. Dokko. A parametric study of age-related factors affecting intracranial responses under impact loading using a human head/brain fe model. In: International Research Council on Biomechanics Injury (IRCOBI), Gothenburg, Sweden, 2013.

  47. Yang, K. H., J. Hu, N. A. White, A. I. King, C. C. Chou, and P. Prasad. Development of numerical models for injury biomechanics research: a review of 50 years of publications in the stapp car crash conference. Stapp Car Crash J. 50:429–490, 2006.

    PubMed  Google Scholar 

  48. Yue, N., and C. D. Untaroiu. A numerical investigation on the variation in hip injury tolerance with occupant posture during frontal collisions. Traffic Inj. Prev. 15:513–522, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Global Human Body Models Consortium, LLC for funding and support. Wake Forest University is the Integration Center of Expertise of the Global Human Body Models Consortium. The authors gratefully acknowledge the meshing and validation efforts by our academic partners in the GHBMC including King Yang and Liying Zhang (Wayne State U., USA), Duane Cronin (U. Waterloo, Canada), Richard Kent and Damien Subit (U. Virginia, USA), Philippe Beillas (IFSTARR, France), Warren Hardy (Virginia Tech, USA), Costin Untaroiu and Jeff Crandall (U. Virginia, USA), and Alan Eberhardt (U. Alabama Birmingham, USA). The abdominal impact deflection method was developed by Philippe Beillas. All simulations were run on the DEAC cluster at Wake Forest University, with support provided by Drs. Damian Valles and Timothy Miller.

Conflict of interest

Drs. Gayzik and Stitzel are members of Elemance, LLC., which is the sole licensor and distributor of academic and commercial licenses for use of the GHBMC, LLC.—owned M50 occupant model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Scott Gayzik.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavalle, N.A., Davis, M.L., Stitzel, J.D. et al. Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts. Ann Biomed Eng 43, 2163–2174 (2015). https://doi.org/10.1007/s10439-015-1286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1286-7

Keywords

Navigation