Skip to main content
Log in

Contractions Reverse Stress Softening in Rat Esophagus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Strain/stress induced tissue softening is usually referred to irreversible softening. The aim of this study was to investigate whether stress softening in rat esophagus is reversible after potassium chloride (KCl) induced contraction. Three series of inflation–deflation loadings were carried out on esophageal specimens obtained from 20 Wistar rats. All specimens were subjected to the first two series in Ca2+-free Krebs solution(Krebs) and then incubated in Ca2+-containing Krebs solution (Krebs+) for 1 h. Ten specimens were distended to pressure 1.0 kPa and activated with KCl for 3 min. The other ten specimens, however, were distended to 1.0 kPa without KCl activation. Subsequently, after incubation in Krebs for 1 h, all 20 specimens were subjected to the third series testing. The stored energy in the esophageal tissues (hysteresis loop area) and the esophageal wall stiffness were compared between two groups within the three series loadings. Results indicated that incubation in Krebs+ cannot recover the stress softening induced energy and stiffness loss, but in contrast, these loss were recovered markedly (p < 0.05) after KCl activation. In conclusion, stress softening in rat esophagus is reversible after the activation of KCl-induced contractions. This mechanism could be related to regeneration of tissue properties in rat esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Almasri, A. M., P. H. Ratz, and J. E. Speich. Length adaptation of the passive-to-active tension ratio in rabbit detrusor. Ann. Biomed. Eng. 38(8):2594–2605, 2010.

    Article  PubMed  Google Scholar 

  2. Bai, T. R., J. H. Bates, V. Brusasco, B. Camoretti-Mercado, P. Chitano, L. H. Deng, M. Dowell, B. Fabry, L. E. Ford, J. J. Fredberg, W. T. Gerthoffer, S. H. Gilbert, S. J. Gunst, C. M. Hai, A. J. Halayko, S. J. Hirst, A. L. James, L. J. Janssen, K. A. Jones, G. G. King, O. J. Lakser, R. K. Lambert, A. M. Lauzon, K. R. Lutchen, G. N. Maksym, R. A. Meiss, S. M. Mijailovich, H. W. Mitchell, R. W. Mitchell, W. Mitzner, T. M. Murphy, P. D. Pare, R. R. Schellenberg, C. Y. Seow, G. C. Sieck, P. G. Smith, A. V. Smolensky, J. Solway, N. L. Stephens, A. G. Stewart, D. D. Tang, and L. Wang. On the terminology for describing the length-force relationship and its changes in airway smooth muscle. J. Appl. Physiol. 97(6):2029–2034, 2004.

    Article  PubMed  Google Scholar 

  3. Bednarek, M. L., J. E. Speich, A. S. Miner, and P. H. Ratz. Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D. Am. J. Physiol. Heart. Circ. Physiol. 300(4):H1166–H1173, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. D’Angelo, W. A., J. F. Fries, A. T. Masi, and L. E. Shulman. Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am. J. Med. 46(3):428–440, 1969.

    Article  PubMed  Google Scholar 

  5. Emery, J. L., J. H. Omens, and A. D. McCulloch. Strain softening in rat left ventricular myocardium. J. Biomech. Eng. 119(1):6–12, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Frokjaer, J. B., S. D. Andersen, N. Ejskjaer, P. Funch-Jensen, A. M. Drewes, and H. Gregersen. Impaired contractility and remodeling of the upper gastrointestinal tract in diabetes mellitus type-1. World J. Gastroenterol. 13(36):4881–4890, 2007.

    PubMed  Google Scholar 

  7. Gregersen, H. Biomechanics of the gastrointestinal tract: new perspective in motility research and diagnostics. London: Springer, 2002.

    Google Scholar 

  8. Gregersen, H., J. L. Emery, and A. D. McCulloch. History-dependent mechanical behavior of guinea-pig small intestine. Ann. Biomed. Eng. 26(5):850–858, 1998.

    Article  CAS  PubMed  Google Scholar 

  9. Gregersen, H., G. E. Villadsen, and D. Liao. Mechanical characteristics of distension-evoked peristaltic contractions in the esophagus of systemic sclerosis patients. Dig. Dis. Sci. 56(12):3559–3568, 2011.

    Article  PubMed  Google Scholar 

  10. Liao, D., J. Zhao, P. Kunwald, and H. Gregersen. Tissue softening of guinea pig esophagus tested by the tri-axial test machine. J. Biomech. 42(7):804–810, 2009.

    Article  PubMed  Google Scholar 

  11. Nurko, S., and R. Rosen. Esophageal dysmotility in patients who have eosinophilic esophagitis. Gastrointest. Endosc. Clin. N. Am. 18(1):73–89, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Petersen, J. A., B. U. Duch, and H. Gregersen. Luminal cross-sectional area and wall distensibility in the isolated porcine esophagus. Int. J. Surg. Investig. 1(1):23–28, 1999.

    CAS  PubMed  Google Scholar 

  13. Ratz, P. H., and J. E. Speich. Evidence that actomyosin cross bridges contribute to “passive” tension in detrusor smooth muscle. Am. J. Physiol. Renal. Physiol. 298(6):F1424–F1435, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Speich, J. E., A. M. Almasri, H. Bhatia, A. P. Klausner, and P. H. Ratz. Adaptation of the length-active tension relationship in rabbit detrusor. Am. J. Physiol. Renal. Physiol. 297(4):F1119–F1128, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Speich, J. E., L. Borgsmiller, C. Call, R. Mohr, and P. H. Ratz. ROK-induced cross-link formation stiffens passive muscle: reversible strain-induced stress softening in rabbit detrusor. Am. J. Physiol. Cell. Physiol. 289(1):12–21, 2005.

    Article  Google Scholar 

  16. Speich, J. E., C. Dosier, L. Borgsmiller, K. Quintero, H. P. Koo, and P. H. Ratz. Adjustable passive length–tension curve in rabbit detrusor smooth muscle. J. Appl. Physiol. 102(5):1746–1755, 2007.

    Article  PubMed  Google Scholar 

  17. Villadsen, G. E., J. Storkholm, H. Zachariae, L. Hendel, F. Bendtsen, and H. Gregersen. Esophageal pressure-cross-sectional area distributions and secondary peristalsis in relation to subclassification of systemic sclerosis. Neurogastroenterol. Motil. 13(3):199–210, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, J., J. Zhao, Y. Zeng, and H. Gregersen. Biomechanical properties of the rat esophagus in experimental type-1 diabetes. Neurogastroenterol. Motil. 16(2):195–203, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, J., D. Liao, and H. Gregersen. Biomechanical and histomorphometric esophageal remodeling in type 2 diabetic GK rats. J. Diabetes. Complic. 21(1):34–40, 2007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the National Natural Science Foundation of China (30970721, 31370949) as well as the National “111 plan” Base (B06023) and the Public Experiment Centre of State Bioindustry Base (Chongqing), China.

Conflict of interest

There is no issue of conflict of interest for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixue Wang.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Liao, D., Zhao, J. et al. Contractions Reverse Stress Softening in Rat Esophagus. Ann Biomed Eng 42, 1717–1728 (2014). https://doi.org/10.1007/s10439-014-1015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1015-7

Keywords

Navigation