Skip to main content

Advertisement

Log in

Ultrasound Effect on Neural Differentiation of Gingival Stem/Progenitor Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dental pulp loss due to caries or pulpitis can affect the longevity of teeth. Dental pulp tissue engineering necessitates the use of progenitor cells that has the potential to differentiate into neural, vascular and odontoblasts like cells. Previous reports have shown that human gingival progenitor cells (HGPCs) can be differentiated into different cell types; however neural differentiation of these cells, to the best of our knowledge, has not been reported. Low intensity pulsed ultrasound (LIPUS) has been reported to enhance cell differentiation. The aims of this study were (1) to explore the potential neural differentiation of HGPCs and (2) to investigate the effect of LIPUS on the differentiation of HGPCs when incubated under neuroinductive conditions. The HGPCs were isolated from human interdental papilla proximal to the premolar teeth that were extracted for orthodontic purpose. The HGPCs were induced to differentiate into neural lineage using a neuroinductive culture medium. HGPCs were divided into four groups; control group, neuro-induction (NI) group, ultrasound group (LIPUS), and a combined NI+LIPUS group. HGPCs were harvested for immunostaining and q-PCR after 1 day. Immunostaining for neuron specific antigens and q-PCR suggested that HGPCs can be differentiated into neural lineage and that selected neurodifferentiation markers can be enhanced by LIPUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Angle, S. R., K. Sena, D. R. Sumner, and A. S. Virdi. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 51(3):281–288, 2011.

    Article  CAS  PubMed  Google Scholar 

  2. Bakopoulou, A., G. Leyhausen, J. Volk, A. Tsiftsoglou, P. Garefis, P. Koidis, and W. Geurtsen. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch. Oral Biol. 56(7):709–721, 2011.

    Article  CAS  PubMed  Google Scholar 

  3. Carnes, D. L., C. L. Maeder, and D. T. Graves. Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J. Periodontol. 68:701–707, 1997.

    Article  CAS  PubMed  Google Scholar 

  4. Casagrande, L., M. M. Cordeiro, S. A. Nör, and J. E. Nör. Dental pulp stem cells in regenerative dentistry. Odontology 99(1):1–7, 2011; (Epub 2011 Jan 27).

    Article  PubMed  Google Scholar 

  5. Dalla-Bona, D. A., E. Tanaka, T. Inubushi, H. Oka, A. Ohta, H. Okada, M. Miyauchi, and K. Tanne. Cementoblast response to low- and high-intensity ultrasound. Arch. Oral Biol. 53(4):318–323, 2008.

    Article  CAS  PubMed  Google Scholar 

  6. Dalla-Bona, D. A., E. Tanaka, H. Oka, E. Yamano, N. Kawai, M. Miyauchi, T. Takata, and K. Tanne. Effects of ultrasound on cementoblast metabolism in vitro. Ultrasound Med. Biol. 32(6):943–948, 2006.

    Article  PubMed  Google Scholar 

  7. Dominici, M., K. L. Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, S. Krause, R. J. Deans, A. Keating, D. J. Prockop, and E. M. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. El-Bialy, T., H. Uludag, N. Jomha, and S. Badylak. In vivo ultrasound assisted tissue engineered mandibular condyle: a pilot study in rabbits. Tissue Eng. Part C 16(6):1315–1323, 2010.

    Article  Google Scholar 

  9. Estrela, C., A. H. Alencar, G. T. Kitten, E. F. Vencio, and E. Gava. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz. Dent. J. 22(2):91–98, 2011.

    PubMed  Google Scholar 

  10. Ferreira, C. F., R. S. Magini, and P. T. Sharpe. Biological tooth replacement and repair. J. Oral Rehabil. 34(12):933–939, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, C. Y., D. Pelaez, J. Dominguez-Bendala, F. Garcia-Godoy, and H. S. Cheung. Plasticity of stem cells derived from adult periodontal ligament. Regen. Med. 4(6):809–821, 2009.

    Article  PubMed  Google Scholar 

  12. Inubushi, T., E. Tanaka, E. B. Rego, M. Kitagawa, A. Kawazoe, A. Ohta, H. Okada, J. H. Koolstra, M. Miyauchi, T. Takata, and K. Tanne. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells. J. Periodontol. 79(10):1984–1990, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Iohara, K., K. Imabayashi, R. Ishizaka, A. Watanabe, J. Nabekura, M. Ito, K. Matsushita, H. Nakamura, and M. Nakashima. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng. Part A 17(15–16):1911–1920, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Ishizaka, R., K. Iohara, M. Murakami, O. Fukuta, and M. Nakashima. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue. Biomaterials 33:2109e2118, 2012.

    Article  Google Scholar 

  15. Jia, L., M. F. Young, J. Powell, L. Yang, N. C. Ho, R. Hotchkiss, P. G. Robey, and A. F. Clair. Gene expression profile of human bone marrow stromal cells: high-throughput expressed sequence tag sequencing analysis. Genomics 79:7–17, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Man, J., R. M. Shelton, P. R. Cooper, and B. A. Scheven. Low-intensity low-frequency ultrasound promotes proliferation and differentiation of odontoblast-like cells. J. Endod. 38(5):608–613, 2012.

    Article  PubMed  Google Scholar 

  17. McAllister, A. K., L. C. Katz, and D. C. Lo. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22:295–318, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. McAllister, A. K., D. C. Lo, and L. C. Katz. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803, 1995.

    Article  CAS  PubMed  Google Scholar 

  19. McGuire, M. K., and E. T. Scheyer. A randomized, double-blind, placebo-controlled study to determine the safety and efficacy of cultured and expanded autologous fibroblast injections for the treatment of interdental papillary insufficiency associated with the papilla priming procedure. J. Periodontol. 78(1):4–17, 2007.

    Article  PubMed  Google Scholar 

  20. Mohammadi, M., M. A. Shokrgozar, and R. Mofid. Culture of human gingival progenitor cells on a biodegradable scaffold and evaluation of its effect on attached gingiva: a randomized, controlled pilot study. J. Periodontol. 78(10):1897–1903, 2007.

    Article  PubMed  Google Scholar 

  21. Mostafa, N. Z., H. Uludag, D. N. Dederich, M. R. Doschak, and T. H. El-Bialy. Anabolic effects of low intensity pulsed ultrasound on gingival fibroblasts. Arch. Oral Biol. 54(8):7 43–7 48, 2009.

    Article  CAS  Google Scholar 

  22. Mostafa, N. Z., H. Uludağ, M. Varkey, D. N. Dederich, M. R. Doschak, and T. H. El-Bialy. In vitro osteogenic induction of human gingival fibroblasts for bone regeneration. Open Dent. J. 5:139–145, 2011; (Epub 2011 Aug 27).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nakamura, T., S. Fujihara, K. Yamamoto-Nagata, T. Katsura, T. Inubushi, and E. Tanaka. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann. Biomed. Eng. 39(12):2964–2971, 2011.

    Article  PubMed  Google Scholar 

  24. Nakashima, M., and A. Akamine. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J. Endod. 31(10):711–718, 2005.

    Article  PubMed  Google Scholar 

  25. Nakashima, M., and K. Iohara. Regeneration of dental pulp by stem cells. Adv. Dent. Res. 23(3):313–319, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Nomura, J., M. Maruyama, M. Katano, H. Kato, J. Zhang, S. Masui, Y. Mizuno, Y. Okazaki, M. Nishimoto, and A. Okuda. Differential requirement for nucleostemin in embryonic stem cell and neural stem cell viability. Stem Cells 27(5):1066–1076, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Pi, S. H., S. K. Lee, Y. S. Hwang, M. G. Choi, S. K. Lee, and E. C. Kim. Differential expression of periodontal ligament-specific markers and osteogenic differentiation in human papilloma virus 16-immortalized human gingival progenitor cells and periodontal ligament cells. J. Periodontal Res. 42:104–113, 2007.

    Article  CAS  PubMed  Google Scholar 

  28. Salehrabi, R., and I. Rotstein. Endodontic treatment outcomes in a large patient population in the USA: an epidemiological study. J. Endod. 30:846–850, 2004.

    Article  PubMed  Google Scholar 

  29. Scheven, B. A., J. L. Millard, P. R. Cooper, S. C. Lea, A. D. Walmsley, and A. J. Smith. Short-term in vitro effects of low frequency ultrasound on odontoblast-like cells. Ultrasound Med. Biol. 33(9):1475–1482, 2007.

    Article  PubMed  Google Scholar 

  30. Silva, W., T. Dimas, Jr., A. Rodrigo, P. S. Rodrigo, L. C. S. Jorge, L. Z. Dalila, R. Anemari, and M. Zago. The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21:661–669, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Tsai, R. Y. L., and R. D. G. McKay. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 16:2991–3003, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wada, N., D. Menicanin, S. Shi, P. M. Bartold, and S. Gronthos. Immunomodulatory properties of human periodontal ligament stem cells. J. Cell Physiol. 219(3):667–676, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Yaghoobi, M. M., S. J. Mowla, and T. Tiraihi. Nucleostemin, a coordinator of self-renewal, is expressed in rat marrow stromal cells and turns off after induction of neural differentiation. Neurosci. Lett. 390(2):81–86, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, W., H. Abukawa, M. J. Troulis, L. B. Kaban, J. P. Vacanti, and P. C. Yelick. Tissue engineered hybrid tooth-bone constructs. Methods 47(2):122–128, 2009.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, H., X. Lin, H. Wan, J. H. Li, and J. M. Li. Effect of low-intensity pulsed ultrasound on the expression of neurotrophin-3 and brain-derived neurotrophic factor in cultured Schwann cells. Microsurgery 29(6):479–485, 2009.

    Article  PubMed  Google Scholar 

  36. Zhang, Q., S. Shi, Y. Liu, J. Uyanne, Y. Shi, S. Shi, and A. Le. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation—related tissue destruction in experimental colitis. J. Immunol. 183:7787–7798, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zhou, S., A. Schmelz, T. Seufferlein, Y. Li, J. Zhao, and M. G. Bachem. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J. Biol. Chem. 279:54463–54469, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Alberta Start-up fund and endorsed by King Saud University. The authors would like to thank Hamid Sadeghi and Daniel Goldberg for technical support.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek El-Bialy.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bialy, T., Alhadlaq, A., Wong, B. et al. Ultrasound Effect on Neural Differentiation of Gingival Stem/Progenitor Cells. Ann Biomed Eng 42, 1406–1412 (2014). https://doi.org/10.1007/s10439-014-1013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1013-9

Keywords

Navigation