Skip to main content

Advertisement

Log in

Can Molecular Imaging Enable Personalized Diagnostics? An Example Using Magnetomotive Photoacoustic Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Commentary to this article was published on 08 February 2014

Abstract

The advantages of photoacoustic (PA) imaging, including low cost, non-ionizing operation, and sub-mm spatial resolution at centimeters depth, make it a promising modality to probe nanoparticle-targeted abnormalities in real time at cellular and molecular levels. However, detecting rare cell types in a heterogeneous background with strong optical scattering and absorption remains a big challenge. For example, differentiating circulating tumor cells in vivo (typically fewer than 10 cells/mL for an active tumor) among billions of erythrocytes in the blood is nearly impossible. In this paper, a newly developed technique, magnetomotive photoacoustic (mmPA) imaging, which can greatly increase the sensitivity and specificity of sensing targeted cells or molecular interactions, is reviewed. Its primary advantage is suppression of background signals through magnetic enrichment/manipulation with simultaneous PA detection of magnetic contrast agent targeted objects. Results from phantom and in vitro studies demonstrate the capability of mmPA imaging to differentiate regions targeted with magnetic nanoparticles from the background, and to trap and sensitively detect targeted cells at a concentration of a single cell per milliliter in a flow system mimicking a human peripheral artery. This technique provides an example of the ways in which molecular imaging can potentially enable robust molecular diagnosis and treatment, and accelerate the translation of molecular medicine into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Agarwal, A., S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102:064701, 2007.

    Article  Google Scholar 

  2. Centers for Medicare & Medicaid Services, Office of the Actuary. National Health Expenditure Projections 2011–2021: http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/Proj2011PDF.pdf, 2012.

  3. Chen, L.-C., C. W. Wei, J. S. Souris, S. H. Cheng, C. T. Chen, C. S. Yang, P. C. Li, and L. W. Lo. Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J. Biomed. Opt. 15:016010, 2010.

    Article  PubMed  Google Scholar 

  4. Ellegala, D. B., H. Leong-Poi, J. E. Carpenter, A. L. Klibanov, S. Kaul, M. E. Shaffrey, J. Sklenar, and J. R. Lindner. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation 108:336–341, 2003.

    Article  PubMed  Google Scholar 

  5. Emelianov, S. Y., P. C. Li, and M. O’Donnell. Photoacoustics for molecular imaging and therapy. Phys. Today 62(5):34–39, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Fleisher, M. A new opportunity for therapeutic management of cancer patients. Clin. Lab. News 34(11), 2008.

  7. He, W., H. Wang, L. C. Hartmann, J. X. Cheng, and P. S. Low. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. U.S.A. 104:11760–11765, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hood, L., J. R. Heath, M. E. Phelps, and B. Lin. Systems biology and new technologies enable predictive and preventative medicine. Science 306:640–643, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, X., C. W. Wei, J. Xia, I. Pelivanov, M. O’Donnell, and X. Gao. Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto-optical coupled nanoparticles. Small 2012. doi:10.1002/smll.201202085.

    PubMed Central  Google Scholar 

  10. Jia, C., S. W. Huang, Y. Jin, C. H. Seo, L. Huang, J. F. Eary, X. Gao, and M. O’Donnell. Integration of photoacoustic, ultrasound, and magnetomotive system. In: Proceedings of SPIE 7564, Photons Plus Ultrasound: Imaging and Sensing 756416. doi:10.1117/12.842485, 2010.

  11. Jin, Y., C. Jia, S. W. Huang, M. O’Donnell, and X. Gao. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 1:41, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Jin, X., C. H. Li, and L. V. Wang. Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography. Med. Phys. 35(7):3205–3214, 2008.

    Article  PubMed  Google Scholar 

  13. Karabutov, A. A., N. B. Podymova, and V. S. Letokhov. Time-resolved laser optoacoustic tomography of inhomogeneous media. Appl. Phys. B 63(6):545–563, 1996.

    Article  CAS  Google Scholar 

  14. Lapotko, D., E. Lukianova-Hleb, S. Zhdanok, B. Rostro, R. Simonette, J. Hafner, M. Konopleva, M. Andreeff, A. Conjusteau, and A. Oraevsky. Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells. In: Proceedings of SPIE 6856, Photons Plus Ultrasound: Imaging and Sensing 68560K. doi:10.1117/12.771660, 2008.

  15. Larina, I. V., K. V. Larin, and R. O. Esenaliev. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D Appl. Phys. 38(15):2633–2639, 2005.

    Article  CAS  Google Scholar 

  16. Li, C., and L. V. Wang. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54(19):R59–R97, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li, P. C., C. R. C. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt. Express 16(23):18605–18615, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Mehrmohammadi, M., J. Oh, S. Mallidi, and S. Y. Emelianov. Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes. Mol. Imaging. 10(2):102–110, 2011.

    PubMed Central  PubMed  Google Scholar 

  19. Mehrmohammadi, M., K. Y. Yoon, M. Qu, K. P. Johnston, and S. Y. Emelianov. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters. Nanotechnology 22:045502, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Miller, C., G. V. Doyle, and L. W. M. M. Terstappen. Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010. doi:10.1155/2010/617421.

    PubMed  Google Scholar 

  21. Nagrath, S., L. V. Sequist, S. Maheswaran, D. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, and A. D. Ha. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pramanik, M., G. Ku, C. H. Li, and L. V. Wang. Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Med. Phys. 35(6):2218–2223, 2008.

    Article  PubMed  Google Scholar 

  23. Qu, M., S. Mallidi, M. Mehrmohammadi, R. Truby, K. Homan, P. Joshi, Y.-S. Chen, K. Sokolov, and S. Y. Emelianov. Magneto-photo-acoustic imaging. Biomed. Opt. Express 2(2):385–395, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rudin, M., and R. Weissleder. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discovery 2:123–131, 2003.

    Article  CAS  Google Scholar 

  25. Shaffer, R., M. A. Leversha, D. C. Danila, O. Lin, R. Gonzalez-Espinoza, B. Gu, A. Anand, K. Smith, P. Maslak, G. V. Doyle, L. W. Terstappen, H. Lilja, G. Heller, M. Fleisher, and H. I. Scher. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin. Cancer Res. 13:2023–2029, 2007.

    Article  CAS  PubMed  Google Scholar 

  26. Talbert, R. J., S. H. Holan, and J. A. Viator. Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring. Phys. Med. Biol. 52(7):1815–1829, 2007.

    Article  PubMed  Google Scholar 

  27. Truby, R. L., S. Y. Emelianov, and K. A. Homan. Ligand-mediated self-assembly of hybrid plasmonic and superparamagnetic nanostructures. Langmuir 29:2465–2470, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Wei, C.-W., J. Xia, I. Pelivanov, X. Hu, X. Gao, and M. O’Donnell. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents. J. Biomed. Opt. 17(10):101517, 2012.

    Article  PubMed  Google Scholar 

  29. Wei, C. W., J. Xia, I. Pelivanov, X. Hu, X. Gao, and M. O’Donnell. Magnetic trapping with simultaneous photoacoustic detection of molecularly targeted rare circulating tumor cells. In: Proceedings of SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 85814W. doi:10.1117/12.2008969, 2013.

  30. Weigelt, B., J. L. Peterse, and L. J. van ’t Veer, Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5:591–602, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Wells, P. N. T. Physics and engineering: milestones in medicine. Med. Eng. Phys. 23:147–153, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Weston, A. D., and L. Hood. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3(2):179–196, 2004.

    Article  CAS  PubMed  Google Scholar 

  33. Wickline, S. A., and G. M. Lanza. Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095, 2003.

    Article  PubMed  Google Scholar 

  34. Wickline, S. A., A. M. Neubauer, P. M. Winter, S. D. Caruthers, and G. M. Lanza. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging 25:667–680, 2007.

    Article  PubMed  Google Scholar 

  35. Winter, P. M., K. Cai, S. D. Caruthers, S. A. Wickline, and G. M. Lanza. Emerging nanomedicine opportunities with perfluorocarbon nanoparticles. Expert Rev. Med. Devices 4:137–145, 2007.

    Article  CAS  PubMed  Google Scholar 

  36. Zerda, A., Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 10:2168–2172, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Zhenga, S., H. Linb, J. Q. Liua, M. Balicb, R. Datarb, R. J. Coteb, and Y. C. Tai. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A 1162(2):154–161, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH RO1EB016034, RO1CA170734, RO1CA131797, R01CA140295, T32CA138312, NSF 0645080, the Life Sciences Discovery Fund 3292512, and the Department of Bioengineering at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-wei Wei.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Donnell, M., Wei, Cw., Xia, J. et al. Can Molecular Imaging Enable Personalized Diagnostics? An Example Using Magnetomotive Photoacoustic Imaging. Ann Biomed Eng 41, 2237–2247 (2013). https://doi.org/10.1007/s10439-013-0901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0901-8

Keywords

Navigation