Skip to main content

Advertisement

Log in

A Device for Continuous Monitoring of True Central Fixation Based on Foveal Birefringence

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A device for continuous monitoring of central fixation utilizes birefringence, the property of the Henle fibers surrounding the human fovea, to change the polarization state of light. A circular scan of retinal birefringence, where the scanning circle encompasses the fovea, allows identification of true central fixation—an assessment much needed in various applications in ophthalmology, psychology, and psychiatry. The device allows continuous monitoring for central fixation over an extended period of time in the presence of fixation targets and distracting stimuli, which may be helpful in detecting attention deficit hyperactivity disorder, autism spectrum disorders, and other disorders characterized by changes in the subject’s ability to maintain fixation. A proof-of-concept has been obtained in a small study of ADHD patients and normal control subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barkley, R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121:65–94, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Clarke, A. H., J. Ditterich, K. Druen, U. Schonfeld, and C. Steineke. Using high frame rate CMOS sensors for three-dimensional eye tracking. Behav. Res. Methods Instrum. Comput. 34:549–560, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. Corden, B., R. Chilvers, and D. Skuse. Avoidance of emotionally arousing stimuli predicts social-perceptual impairment in Asperger’s syndrome. Neuropsychologia 46:137–147, 2008.

    Article  PubMed  Google Scholar 

  4. Cornsweet, T. N., and H. D. Crane. Accurate two-dimensional eye tracker using first and fourth Purkinje images. J. Opt. Soc. Am. 63:921–928, 1973.

    Article  PubMed  CAS  Google Scholar 

  5. Crais, E. R., L. R. Watson, G. T. Baranek, and J. S. Reznick. Early identification of autism: how early can we go? Semin. Speech Lang. 27:143–160, 2006.

    Article  PubMed  Google Scholar 

  6. Dalton, K. M., B. M. Nacewicz, T. Johnstone, H. S. Schaefer, M. A. Gernsbacher, H. H. Goldsmith, A. L. Alexander, and R. J. Davidson. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8:519–526, 2005.

    PubMed  CAS  Google Scholar 

  7. Eizenman, M., R. C. Frecker, and P. E. Hallett. Precise non-contacting measurement of eye movements using the corneal reflex. Vis. Res. 24:167–174, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Forbes, G. B. Clinical Utility of the Test of Variables of Attention (TOVA) in the diagnosis of Attention-Deficit/Hyperactivity Disorder. J. Clin. Psychol. 54:461–476, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Frindt, N. Alignment and testing of an eye fixation monitor for ADHD diagnosis and research. Masters Thesis, Department of Clinical Medicine Mannheim, Ruprecht Karls University, Heidelberg, 2007, p. 59.

  10. Gould, T. D., T. M. Bastain, M. E. Israel, D. W. Hommer, and F. X. Castellanos. Altered performance on an ocular fixation task in attention-deficit/hyperactivity disorder. Biol. Psychiatry 50:633–635, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Gramatikov, B. I., O. H. Zalloum, Y. K. Wu, D. G. Hunter, and D. L. Guyton. Birefringence-based eye fixation monitor with no moving parts. J. Biomed. Opt. 11:34025, 2006.

    Article  PubMed  CAS  Google Scholar 

  12. Gramatikov, B. I., O. H. Zalloum, Y. K. Wu, D. G. Hunter, and D. L. Guyton. Directional eye fixation sensor using birefringence-based foveal detection. Appl. Opt. 46:1809–1818, 2007.

    Article  PubMed  Google Scholar 

  13. Granet, D. B., C. F. Gomi, R. Ventura, and A. Miller-Scholte. The relationship between convergence insufficiency and ADHD. Strabismus 13:163–168, 2005.

    Article  PubMed  Google Scholar 

  14. Guyton, D. L., D. G. Hunter, S. N. Patel, J. C. Sandruck, and R. L. Fry. Eye fixation monitor and tracker. U.S. Patent No. 6,027,216, 2000.

  15. Hunter, D. G., D. S. Nassif, N. V. Piskun, R. Winsor, B. I. Gramatikov, and D. L. Guyton. Pediatric Vision Screener 1: instrument design and operation. J. Biomed. Opt. 9:1363–1368, 2004.

    Article  PubMed  Google Scholar 

  16. Hunter, D. G., S. N. Patel, and D. L. Guyton. Automated detection of foveal fixation by use of retinal birefringence scanning. Appl. Opt. 38:1273–1279, 1999.

    Article  PubMed  CAS  Google Scholar 

  17. Hunter, D. G., N. V. Piskun, D. L. Guyton, B. I. Gramatikov, and D. Nassif. Clinical performance of the Pediatric Vision Screener. In: ARVO, Ft. Lauderdale, FL, 2004.

  18. Hunter, D. G., J. C. Sandruck, S. Sau, S. N. Patel, and D. L. Guyton. Mathematical modeling of retinal birefringence scanning. J. Opt. Soc. Am. A 16:2103–2111, 1999.

    Article  CAS  Google Scholar 

  19. Irie, K., B. A. Wilson, R. D. Jones, P. J. Bones, and T. J. Anderson. A laser-based eye-tracking system. Behav. Res. Methods Instrum. Comput. 34:561–572, 2002.

    Article  PubMed  Google Scholar 

  20. Irsch, K., B. Gramatikov, Y. K. Wu, and D. Guyton. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection. Biomed. Opt. Express 2:1955–1968, 2011.

    Article  PubMed  Google Scholar 

  21. Jones, W., K. Carr, and A. Klin. Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch. Gen. Psychiatry 65:946–954, 2008.

    Article  PubMed  Google Scholar 

  22. Karatekin, C. Improving antisaccade performance in adolescents with attention-deficit/hyperactivity disorder (ADHD). Exp. Brain Res. 174:324–341, 2006.

    Article  PubMed  Google Scholar 

  23. Klin, A., W. Jones, R. Schultz, F. Volkmar, and D. Cohen. Defining and quantifying the social phenotype in autism. Am. J. Psychiatry 159:895–908, 2002.

    Article  PubMed  Google Scholar 

  24. Landa, R. Early communication development and intervention for children with autism. Ment. Retard. Dev. Disabil. Res. Rev. 13:16–25, 2007.

    Article  PubMed  Google Scholar 

  25. Landa, R., and E. Garrett-Mayer. Development in infants with autism spectrum disorders: a prospective study. J. Child Psychol. Psychiatry 47:629–638, 2006.

    Article  PubMed  Google Scholar 

  26. Landa, R. J., K. C. Holman, A. H. O’Neill, and E. A. Stuart. Intervention targeting development of socially synchronous engagement in toddlers with autism spectrum disorder: a randomized controlled trial. J. Child Psychol. Psychiatry 52:13–21, 2011.

    Article  PubMed  Google Scholar 

  27. Mahone, E. M., S. H. Mostofsky, A. G. Lasker, D. Zee, and M. B. Denckla. Oculomotor anomalies in attention-deficit/hyperactivity disorder: evidence for deficits in response preparation and inhibition. J. Am. Acad. Child Adolesc. Psychiatry 48:749–756, 2009.

    Article  PubMed  Google Scholar 

  28. Merin, N., G. S. Young, S. Ozonoff, and S. J. Rogers. Visual fixation patterns during reciprocal social interaction distinguish a subgroup of 6-month-old infants at-risk for autism from comparison infants. J. Autism Dev. Disord. 37:108–121, 2007.

    Article  PubMed  Google Scholar 

  29. Mostofsky, S. H., A. G. Lasker, L. E. Cutting, M. B. Denckla, and D. S. Zee. Oculomotor abnormalities in attention deficit hyperactivity disorder: a preliminary study. Neurology 57:423–430, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Mostofsky, S. H., A. G. Lasker, H. S. Singer, M. B. Denckla, and D. S. Zee. Oculomotor abnormalities in boys with Tourette syndrome with and without ADHD. J. Am. Acad. Child Adolesc. Psychiatry 40:1464–1472, 2001.

    Article  PubMed  CAS  Google Scholar 

  31. Müllenbroich, M. C. Design and construction of a fixation stability monitor for diagnosis and management of ADHD. Masters Thesis, Faculty of Clinical Medicine Mannheim, The Ruprecht Karls University, Heidelberg, 2006, p. 69.

  32. Munoz, D. P., I. T. Armstrong, K. A. Hampton, and K. D. Moore. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J. Neurophysiol. 90:503–514, 2003.

    Article  PubMed  Google Scholar 

  33. Nikolaev, A. R., C. Nakatani, G. Plomp, P. Jurica, and C. van Leeuwen. Eye fixation-related potentials in free viewing identify encoding failures in change detection. Neuroimage 56:1598–1607, 2011.

    Article  PubMed  Google Scholar 

  34. Pruehsner, W., and J. D. Enderle. Eye tracker. Biomed. Sci. Instrum. 35:235–240, 1999.

    PubMed  CAS  Google Scholar 

  35. Reulen, J. P., J. T. Marcus, D. Koops, F. R. de Vries, G. Tiesinga, K. Boshuizen, and J. E. Bos. Precise recording of eye movement: the IRIS technique. Part 1. Med. Biol. Eng. Comput. 26:20–26, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Rogers, S. J. Empirically supported comprehensive treatments for young children with autism. J. Clin. Child Psychol. 27:168–179, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Ross, R. G., D. Hommer, D. Breiger, C. Varley, and A. Radant. Eye movement task related to frontal lobe functioning in children with attention deficit disorder. J. Am. Acad. Child Adolesc. Psychiatry 33:869–874, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Sliney, D., and M. Wolbarsht. Safety with Lasers and Other Optical Sources., Plenum Press, New York, 1980.

  39. Sun, L., Y. Wang, Y. Han, and R. Zhu. Exploratory eye movement in children with ADHD. Beijing Da Xue Xue Bao 35:284–287, 2003.

    PubMed  Google Scholar 

  40. van der Geest, J. N., C. Kemner, G. Camfferman, M. N. Verbaten, and H. van Engeland. Looking at images with human figures: comparison between autistic and normal children. J. Autism Dev. Disord. 32:69–75, 2002.

    Article  PubMed  Google Scholar 

  41. Young, G. S., N. Merin, S. J. Rogers, and S. Ozonoff. Gaze behavior and affect at 6 months: predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. Dev. Sci. 12:798–814, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research supported in part by gifts from grateful patients, with major contributions from Diane and Robert Levy of Chicago. The authors thank the Division of Pediatric Ophthalmology at the Wilmer Eye Institute and especially Hee-Jung Park, M.D. and Alex Christoff, C.O., C.O.T, for providing the test subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Gramatikov.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramatikov, B., Irsch, K., Müllenbroich, M. et al. A Device for Continuous Monitoring of True Central Fixation Based on Foveal Birefringence. Ann Biomed Eng 41, 1968–1978 (2013). https://doi.org/10.1007/s10439-013-0818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0818-2

Keywords

Navigation