Skip to main content

Advertisement

Log in

Gender-Dependence of Bone Structure and Properties in Adult Osteogenesis Imperfecta Murine Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bargman, R., A. Huang, A. L. Boskey, C. Raggio, and N. Pleshko. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect. Tissue Res. 51:123–131, 2010.

    Article  PubMed  CAS  Google Scholar 

  2. Bargman, R., R. Posham, A. L. Boskey, E. Dicarlo, C. Raggio, and N. Pleshko. Comparable outcomes in fracture reduction and bone properties with RANKL inhibition and alendronate treatment in a mouse model of osteogenesis imperfecta. Osteoporos. Int. 23:1141–1150, 2012.

    Article  PubMed  CAS  Google Scholar 

  3. Camacho, N. P., P. Carroll, and C. L. Raggio. Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice. Calcif. Tissue Int. 72:604–609, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Camacho, N. P., L. Hou, T. R. Toledano, W. A. Ilg, C. F. Brayton, C. L. Raggio, L. Root, and A. L. Boskey. The material basis for reduced mechanical properties in oim mice bones. J. Bone Miner. Res. 14:264–272, 1999.

    Article  PubMed  CAS  Google Scholar 

  5. Camacho, N. P., W. J. Landis, and A. L. Boskey. Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. Connect. Tissue Res. 35:259–265, 1996.

    Article  PubMed  CAS  Google Scholar 

  6. Camacho, N. P., C. L. Raggio, S. B. Doty, L. Root, V. Zraick, W. A. Ilg, T. R. Toledano, and A. L. Boskey. A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif. Tissue Int. 69:94–101, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Carleton, S. M., D. J. McBride, W. L. Carson, C. E. Huntington, K. L. Twenter, K. M. Rolwes, C. T. Winkelmann, J. S. Morris, J. F. Taylor, and C. L. Phillips. Role of genetic background in determining phenotypic severity throughout postnatal development and at peak bone mass in Col1a2 deficient mice (oim). Bone 42:681–694, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. Carleton, S. M., G. M. Whitford, and C. L. Phillips. Dietary fluoride restriction does not alter femoral biomechanical strength in col1a2-deficient (oim) mice with type I collagen glomerulopathy. J. Nutr. 140:1752–1756, 2010.

    Article  PubMed  CAS  Google Scholar 

  9. Chipman, S. D., H. O. Sweet, D. J. McBride, Jr., M. T. Davisson, S. C. Marks, Jr., A. R. Shuldiner, R. J. Wenstrup, D. W. Rowe, and J. R. Shapiro. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl. Acad. Sci. U.S.A. 90:1701–1705, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Coleman, R. M., L. Aguilera, L. Quinones, L. Lukashova, C. Poirier, and A. Boskey. Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI. Bone 51:920–928, 2012.

    Article  PubMed  CAS  Google Scholar 

  11. Cundy, T. Recent advances in osteogenesis imperfecta. Calcif. Tissue Int. 90:439–449, 2012.

    Article  PubMed  CAS  Google Scholar 

  12. Delos, D., X. Yang, B. F. Ricciardi, E. R. Myers, M. P. Bostrom, and N. P. Camacho. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J. Orthop. Res. 26:153–164, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Evans, K. D., S. T. Lau, A. M. Oberbauer, and R. B. Martin. Alendronate affects long bone length and growth plate morphology in the oim mouse model for Osteogenesis Imperfecta. Bone 32:268–274, 2003.

    Article  PubMed  Google Scholar 

  14. Forlino, A., W. A. Cabral, A. M. Barnes, and J. C. Marini. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7:540–557, 2011.

    Article  PubMed  CAS  Google Scholar 

  15. Gentry, B. A., J. A. Ferreira, A. J. McCambridge, M. Brown, and C. L. Phillips. Skeletal muscle weakness in osteogenesis imperfecta mice. Matrix Biol. 29:638–644, 2010.

    Article  PubMed  CAS  Google Scholar 

  16. Guillot, P. V., O. Abass, J. H. Bassett, S. J. Shefelbine, G. Bou-Gharios, J. Chan, H. Kurata, G. R. Williams, J. Polak, and N. M. Fisk. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111:1717–1725, 2008.

    Article  PubMed  CAS  Google Scholar 

  17. Hahn, M., M. Vogel, M. Pompesius-Kempa, and G. Delling. Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Kamoun-Goldrat, A. S., and M. F. Le Merrer. Animal models of osteogenesis imperfecta and related syndromes. J. Bone Miner. Metab. 25:211–218, 2007.

    Article  PubMed  Google Scholar 

  19. Kim, B. T., L. Mosekilde, Y. Duan, X. Z. Zhang, L. Tornvig, J. S. Thomsen, and E. Seeman. The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J. Bone Miner. Res. 18:150–155, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Krabbe, S., C. Christiansen, P. Rodbro, and I. Transbol. Effect of puberty on rates of bone growth and mineralisation: with observations in male delayed puberty. Arch. Dis. Child. 54:950–953, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Lindberg, M. K., S. L. Alatalo, J. M. Halleen, S. Mohan, J. A. Gustafsson, and C. Ohlsson. Estrogen receptor specificity in the regulation of the skeleton in female mice. J. Endocrinol. 171:229–236, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Marini, J. C., A. Forlino, W. A. Cabral, A. M. Barnes, J. D. San Antonio, S. Milgrom, J. C. Hyland, J. Korkko, D. J. Prockop, A. De Paepe, P. Coucke, S. Symoens, F. H. Glorieux, P. J. Roughley, A. M. Lund, K. Kuurila-Svahn, H. Hartikka, D. H. Cohn, D. Krakow, M. Mottes, U. Schwarze, D. Chen, K. Yang, C. Kuslich, J. Troendle, R. Dalgleish, and P. H. Byers. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28:209–221, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Martin, R. B. Size, structure and gender: lessons about fracture risk. J. Musculoskelet. Neuronal Interact. 2:209–211, 2002.

    PubMed  CAS  Google Scholar 

  24. McBride, Jr., D. J., J. R. Shapiro, and M. G. Dunn. Bone geometry and strength measurements in aging mice with the oim mutation. Calcif. Tissue Int. 62:172–176, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. McCarthy, E. A., C. L. Raggio, M. D. Hossack, E. A. Miller, S. Jain, A. L. Boskey, and N. P. Camacho. Alendronate treatment for infants with osteogenesis imperfecta: demonstration of efficacy in a mouse model. Pediatr. Res. 52:660–670, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Mehrotra, M., M. Rosol, M. Ogawa, and A. C. Larue. Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies. Exp. Hematol. 38:593–602, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, E., D. Delos, T. Baldini, T. M. Wright, and N. Pleshko Camacho. Abnormal mineral–matrix interactions are a significant contributor to fragility in oim/oim bone. J. Cell. Biochem. 81:206–214, 2007.

    CAS  Google Scholar 

  28. Misof, B. M., P. Roschger, T. Baldini, C. L. Raggio, V. Zraick, L. Root, A. L. Boskey, K. Klaushofer, P. Fratzl, and N. P. Camacho. Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone 36:150–158, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Olson, L. E., C. Ohlsson, and S. Mohan. The role of GH/IGF-I-mediated mechanisms in sex differences in cortical bone size in mice. Calcif. Tissue Int. 88:1–8, 2011.

    Article  PubMed  CAS  Google Scholar 

  30. Oz, O. K., J. E. Zerwekh, C. Fisher, K. Graves, L. Nanu, R. Millsaps, and E. R. Simpson. Bone has a sexually dimorphic response to aromatase deficiency. J. Bone Miner. Res. 15:507–514, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Panaroni, C., R. Gioia, A. Lupi, R. Besio, S. A. Goldstein, J. Kreider, S. Leikin, J. C. Vera, E. L. Mertz, E. Perilli, F. Baruffaldi, I. Villa, A. Farina, M. Casasco, G. Cetta, A. Rossi, A. Frattini, J. C. Marini, P. Vezzoni, and A. Forlino. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114:459–468, 2009.

    Article  PubMed  CAS  Google Scholar 

  32. Pereira, R., J. S. Khillan, H. J. Helminen, E. L. Hume, and D. J. Prockop. Transgenic mice expressing a partially deleted gene for type I procollagen (COL1A1). A breeding line with a phenotype of spontaneous fractures and decreased bone collagen and mineral. J. Clin. Invest. 91:709–716, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Phillips, C. L., D. A. Bradley, C. L. Schlotzhauer, M. Bergfeld, C. Libreros-Minotta, L. R. Gawenis, J. S. Morris, L. L. Clarke, and L. S. Hillman. Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density. Bone 27:219–226, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Primorac, D., D. W. Rowe, M. Mottes, I. Barisic, D. Anticevic, S. Mirandola, M. Gomez Lira, I. Kalajzic, V. Kusec, and F. H. Glorieux. Osteogenesis imperfecta at the beginning of bone and joint decade. Croat. Med. J. 42:393–415, 2001.

    PubMed  CAS  Google Scholar 

  35. Rao, S. H., K. D. Evans, A. M. Oberbauer, and R. B. Martin. Bisphosphonate treatment in the oim mouse model alters bone modeling during growth. J. Biomech. 41:3371–3376, 2008.

    Article  PubMed  CAS  Google Scholar 

  36. Rauch, F., R. Travers, A. M. Parfitt, and F. H. Glorieux. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26:581–589, 2000.

    Article  PubMed  CAS  Google Scholar 

  37. Richman, C., S. Kutilek, N. Miyakoshi, A. K. Srivastava, W. G. Beamer, L. R. Donahue, C. J. Rosen, J. E. Wergedal, D. J. Baylink, and S. Mohan. Postnatal and pubertal skeletal changes contribute predominantly to the differences in peak bone density between C3H/HeJ and C57BL/6J mice. J. Bone Miner. Res. 16:386–397, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Rosen, H. N., V. Chen, A. Cittadini, S. L. Greenspan, P. S. Douglas, A. C. Moses, and W. G. Beamer. Treatment with growth hormone and IGF-I in growing rats increases bone mineral content but not bone mineral density. J. Bone Miner. Res. 10:1352–1358, 1995.

    Article  PubMed  CAS  Google Scholar 

  39. Saban, J., M. A. Zussman, R. Havey, A. G. Patwardhan, G. B. Schneider, and D. King. Heterozygous oim mice exhibit a mild form of osteogenesis imperfecta. Bone 19:575–579, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Saxon, L. K., G. Galea, L. Meakin, J. Price, and L. E. Lanyon. Estrogen receptors alpha and beta have different gender-dependent effects on the adaptive responses to load bearing in cancellous and cortical bone. Endocrinology 153:2254–2266, 2012.

    Article  PubMed  CAS  Google Scholar 

  41. Schriefer, J. L., A. G. Robling, S. J. Warden, A. J. Fournier, J. J. Mason, and C. H. Turner. A comparison of mechanical properties derived from multiple skeletal sites in mice. J. Biomech. 38:467–475, 2005.

    Article  PubMed  Google Scholar 

  42. Sillence, D. O., A. Senn, and D. M. Danks. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16:101–116, 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.

    Article  PubMed  CAS  Google Scholar 

  44. Vanleene, M., A. Porter, P. V. Guillot, A. Boyde, M. Oyen, and S. Shefelbine. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone 50:1317–1323, 2012.

    Article  PubMed  Google Scholar 

  45. Vanleene, M., Z. Saldanha, K. L. Cloyd, G. Jell, G. Bou-Gharios, J. H. Bassett, G. R. Williams, N. M. Fisk, M. L. Oyen, M. M. Stevens, P. V. Guillot, and S. J. Shefelbine. Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood 117:1053–1060, 2011.

    Article  PubMed  CAS  Google Scholar 

  46. Viguet-Carrin, S., P. Garnero, and P. D. Delmas. The role of collagen in bone strength. Osteoporos. Int. 17:319–336, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Wallace, J. M., R. M. Rajachar, X. D. Chen, S. Shi, M. R. Allen, S. A. Bloomfield, C. M. Les, P. G. Robey, M. F. Young, and D. H. Kohn. The mechanical phenotype of biglycan-deficient mice is bone- and gender-specific. Bone 39:106–116, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Mark Dallas for assistance with μCT and three-point bending experiments. This work was supported by National Institutes of Health grant R01AR055907. This study utilized the Center for Research on Interfacial Structure and Properties (CRISP) and Center of Excellence in Mineralized Tissues (CEMT) facilities at the University of Missouri Kansas City.

Conflict of interest

The authors confirm they have full control of all primary data and will allow the journal to review the data. The authors confirm there is no conflict of interest or financial relationship with the organizations that sponsored this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charlotte L. Phillips or Yong Wang.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, X., Carleton, S.M., Kettle, A.D. et al. Gender-Dependence of Bone Structure and Properties in Adult Osteogenesis Imperfecta Murine Model. Ann Biomed Eng 41, 1139–1149 (2013). https://doi.org/10.1007/s10439-013-0793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0793-7

Keywords

Navigation