Skip to main content
Log in

The Effect of Moving Point of Contact Stimulation on Chondrocyte Gene Expression and Localization in Tissue Engineered Constructs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue engineering is a promising approach for articular cartilage repair. However, using current technologies, the developed engineered constructs generally do not possess an organized superficial layer, which contributes to the tissue’s durability and unique mechanical properties. In this study, we investigated the efficacy of applying a moving point of contract-type stimulation (MPS) to stimulate the production of a superficial-like layer in the engineered constructs. MPS was applied to chondrocyte-agarose hydrogels at a frequency of 0.5, 1 or 2 Hz, under a constant compressive load of 10 mN for durations between 5 and 60 min over 3 consecutive days. Expression and localization of superficial zone constituents was conducted by qRT-PCR and in situ hybridization. Finite element modeling was also constructed to gain insight into the relationship between the applied stimulus and superficial zone constituent expression. Gene expression of superficial zone markers were affected in a frequency dependent manner with a physiologic frequency of 1 Hz producing maximal expression of PRG4, biglycan, decorin and collagen II. In situ hybridization revealed that localization of these markers predominantly occurred at 500–1000 μm below the construct surface which correlated to sub-surface strains between 10 and 25% as determined by finite element modeling. These results indicate that while mechanical stimuli can be used to enhance the expression of superficial zone constituents in engineered cartilage constructs, the resultant subsurface loading is a critical factor for localizing expression. Future studies will investigate altering the applied stimulus to further localize superficial zone constituent expression at the construct surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Boyle, J., B. Luan, T. F. Cruz, and R. A. Kandel. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro. Osteoarthr. Cartil. 3:117–125, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Broom, N. D., and D. B. Myers. A study of the structural response of wet hyaline cartilage to various loading situations. Connect Tissue Res. 7(4):227–237, 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33:3–14, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, T. D., and D. T. Shaw. In vitro contact stress distribution on the femoral condyles. J. Orthop. Res. 2:190–199, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Buckwalter, J. A., H. J. Mankin, and A. J. Grodzinsky. Articular cartilage and osteoarthritis. Instr. Course Lect. 54:465, 2005.

    PubMed  Google Scholar 

  6. Choi, A. P. C., and Y. Zheng. Estimation of Young’s modulus and Poisson’s ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect. Med. Biol. Eng. Comput. 43:258–264, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Coles, J. M., L. Zhang, J. J. Blum, M. L. Warman, G. D. Jay, F. Guilak, and S. Zauscher. Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthritis Rheum. 62:1666–1674, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. De Croos, J. N. A., S. S. Dhaliwal, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biol. 25:323–331, 2006.

    Article  PubMed  Google Scholar 

  9. Deschner, J., C. R. Hofman, N. P. Piesco, and S. Agarwal. Signal transduction by mechanical strain in chondrocytes. Curr. Opin. Clin. Nutr. Metab. Care 6:289–293, 2003.

    PubMed  CAS  Google Scholar 

  10. Fan, J. C. Y., and S. D. Waldman. The effect of intermittent static biaxial tensile strains on tissue engineered cartilage. Ann. Biomed. Eng. 38:1672–1682, 2010.

    Article  PubMed  Google Scholar 

  11. Flannery, C. R., C. E. Hughes, B. L. Schumacher, D. Tudor, M. B. Aydelotte, K. E. Kuettner, and B. Caterson. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and Is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem. Biophys. Res. Commun. 254:535–541, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Getgood, A., T. Bhullar, and N. Rushton. Current concepts in articular cartilage repair. Orthop. Trauma 23:189–200, 2009.

    Article  Google Scholar 

  13. Grad, S., C. R. Lee, K. Gorna, S. Gogolewski, M. A. Wimmer, and M. Alini. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds. Tissue Eng. 11:249–256, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Grad, S., C. R. Lee, M. A. Wimmer, and M. Alini. Chondrocyte gene expression under applied surface motion. Biorheology 43:259–269, 2006.

    PubMed  Google Scholar 

  15. Grad, S., D. Eglin, M. Alini, and M. J. Stoddart. Physical stimulation of chondrogenic cells in vitro: a review. Clin. Orthop. Relat. Res. 469:2764–2772, 2011.

    Article  PubMed  Google Scholar 

  16. Grad, S., M. Loparic, R. Peter, M. Stolz, and U. Aebi. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthr. Cartil., 2012. DOI:10.1016/j.joca.2011.12.010.

  17. Grad, S., S. Gogolewski, M. Alini, and M. A. Wimmer. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds. Tissue Eng. 12:3171–3179, 2006.

    Article  PubMed  CAS  Google Scholar 

  18. Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1541, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Han, E., W. C. Bae, N. D. Hsieh-Bonassera, V. W. Wong, B. L. Schumacher, S. Görtz, K. Masuda, W. D. Bugbee, and R. L. Sah. Shaped, stratified, scaffold-free grafts for articular cartilage defects. Clin. Orthop. Relat. Res. 466:1912–1920, 2008.

    Article  PubMed  Google Scholar 

  20. Hasler, E., W. Herzog, J. Wu, W. Müller, and U. Wyss. Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit. Rev. Biomed. Eng. 27:415–488, 1999.

    PubMed  CAS  Google Scholar 

  21. Hayes, W., L. Keer, G. Herrmann, and L. Mockros. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5:541–551, 1972.

    Article  PubMed  CAS  Google Scholar 

  22. Hoenig, E., T. Winkler, G. Mielke, H. Paetzold, D. Schuettler, C. Goepfert, H.-G. Machens, M. M. Morlock, and A. F. Schilling. High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng. A 17:1401–1411, 2011.

    Article  CAS  Google Scholar 

  23. Hohe, J., G. Ateshian, M. Reiser, K. H. Englmeier, and F. Eckstein. Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magn. Reson. Med. 47:554–561, 2002.

    Article  PubMed  Google Scholar 

  24. Huang, A. H., B. M. Baker, G. A. Ateshian, and R. L. Mauck. Sliding contact loading enhances the tensile properties of mesenchymal stem cell-seeded hydrogels. Eur. Cell Mater. 24:29–45, 2012.

    PubMed  Google Scholar 

  25. Hunter, C. J., S. M. Imler, P. Malaviya, R. M. Nerem, and M. E. Levenston. Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials 23:1249–1259, 2002.

    Article  PubMed  CAS  Google Scholar 

  26. Hwang, N. S., S. Varghese, H. J. Lee, P. Theprungsirikul, A. Canver, B. Sharma, and J. Elisseeff. Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS Lett. 581:4172–4178, 2007.

    Article  PubMed  CAS  Google Scholar 

  27. Jay, G. D., J. R. Torres, D. K. Rhee, H. J. Helminen, M. M. Hytinnen, C.-J. Cha, K. Elsaid, K.-S. Kim, Y. Cui, and M. L. Warman. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 56:3662–3669, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson, K. L. Contact Mechanics. Cambridge: Cambridge University Press, p. 1, 1987.

    Google Scholar 

  29. Kaupp, J. A., and S. D. Waldman. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture. Proc. Inst. Mech. Eng. H 222:695–703, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Kim, T. K., B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, and J. H. Elisseeff. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr. Cartil. 11:653–664, 2003.

    Article  PubMed  Google Scholar 

  31. Kim, Y. J., R. L. Sah, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311:1–12, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Klein, T. J., B. L. Schumacher, M. E. Blewis, T. A. Schmidt, M. S. Voegtline, E. J.-M. Thonar, K. Masuda, and R. L. Sah. Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage. Tissue Eng. 12:1429–1439, 2006.

    Article  PubMed  CAS  Google Scholar 

  33. Klein, T. J., B. L. Schumacher, T. A. Schmidt, K. W. Li, M. S. Voegtline, K. Masuda, E. J.-M. A. Thonar, and R. L. Sah. Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthr. Cartil. 11:595–602, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. B Rev. 15:143–157, 2009.

    Article  CAS  Google Scholar 

  35. Klein, T. J., S. C. Rizzi, and J. C. Reichert. Strategies for zonal cartilage repair using hydrogels. Macromol. BioSci. 9(11):1049–1058, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Korhonen, R. K., M. Wong, J. Arokoski, R. Lindgren, H. J. Helminen, E. B. Hunziker, and J. S. Jurvelin. Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med. Eng. Phys. 24:99–108, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Kurz, B., M. Jin, P. Patwari, D. M. Cheng, M. W. Lark, and A. J. Grodzinsky. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J. Orthop. Res. 19:1140–1146, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, D. A., and D. L. Bader. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J. Orthop. Res. 15:181–188, 1997.

    Article  PubMed  Google Scholar 

  39. Lee, D. A., T. Noguchi, M. M. Knight, L. O’Donnell, G. Bentley, and D. L. Bader. Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J. Orthop. Res. 16:726–733, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. Leipzig, N. D., and K. A. Athanasiou. Static compression of single chondrocytes catabolically modifies single-cell gene expression. Biophys. J. 94:2412–2422, 2008.

    Article  PubMed  CAS  Google Scholar 

  41. Mio, K., J. Kirkham, and W. A. Bonass. Tips for extracting total RNA from chondrocytes cultured in agarose gel using a silica-based membrane kit. Anal. Biochem. 351:314–316, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Mouw, J. K., N. D. Case, R. E. Guldberg, A. H. K. Plaas, and M. E. Levenston. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartil. 13:828–836, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. Mow, V. C., and R. Huiskes. Basic Orthopaedic Biomechanics and Mechano-Biology. Philadelphia: Lippincott Williams & Wilkins, p. 1, 2004.

    Google Scholar 

  44. Neu, C. P., A. Khalafi, K. Komvopoulos, T. M. Schmid, and A. H. Reddi. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor β signaling. Arthritis Rheum. 56:3706–3714, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Neu, C. P., K. Komvopoulos, and A. H. Reddi. The interface of functional biotribology and regenerative medicine in synovial joints. Tissue Eng. B Rev. 14:235–247, 2008.

    Article  CAS  Google Scholar 

  46. Ng, K. W., C. C. B. Wang, R. L. Mauck, T.-A. N. Kelly, N. O. Chahine, K. D. Costa, G. A. Ateshian, and C. T. Hung. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J. Orthop. Res. 23:134–141, 2005.

    Article  PubMed  Google Scholar 

  47. Ng, K. W., G. A. Ateshian, and C. T. Hung. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. A 15:2315–2324, 2009.

    Article  CAS  Google Scholar 

  48. Ng, K. W., R. L. Mauck, L. Y. Statman, E. Y. Lin, G. A. Ateshian, and C. T. Hung. Dynamic deformational loading results in selective application of mechanical stimulation in a layered, tissue-engineered cartilage construct. Biorheology 43:497–507, 2006.

    PubMed  Google Scholar 

  49. Nguyen, L. H., A. K. Kudva, N. S. Saxena, and K. Roy. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32:6946–6952, 2011.

    Article  PubMed  CAS  Google Scholar 

  50. Nugent-Derfus, G., T. Takara, J. O’Neill, S. Cahill, S. Gortz, T. Pong, H. Inoue, N. Aneloski, W. Wang, and K. Vega. Continuous passive motion applied to whole joints stimulates chondrocyte biosynthesis of PRG41. Osteoarthr. Cartil. 15:566–574, 2007.

    Article  PubMed  CAS  Google Scholar 

  51. O’Connell, D., E. G. Lima, L. Bian, N. O. Chahine, M. B. Albro, J. Cook, G. Ateshian, and C. T. Hung. Toward engineering a biological joint replacement. J. Knee Surg., 1969. DOI:10.1055/s-0032-1319783.

  52. Ofek, G., and K. A. Athanasiou. Micromechanical properties of chondrocytes and chondrons: relevance to articular cartilage tissue engineering. J. Mech. Mater. Struct. 2:1059–1086, 2007.

    Article  Google Scholar 

  53. Ofek, G., D. C. Wiltz, and K. A. Athanasiou. Contribution of the cytoskeleton to the compressive properties and recovery behavior of single cells. Biophys. J. 97:1873–1882, 2009.

    Article  PubMed  CAS  Google Scholar 

  54. Owen, J. R., and J. S. Wayne. Influence of a superficial tangential zone over repairing cartilage defects: implications for tissue engineering. Biomech. Model. Mechanobiol. 5:102–110, 2006.

    Article  PubMed  CAS  Google Scholar 

  55. Poole, A. R., L. C. Rosenberg, A. Reiner, M. Ionescu, E. Bogoch, and P. J. Roughley. Contents and distributions of the proteoglycans decorin and biglycan in normal and osteoarthritic human articular cartilage. J. Orthop. Res. 14:681–689, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Ragan, P. M., A. M. Badger, M. Cook, V. I. Chin, M. Gowen, A. J. Grodzinsky, and M. W. Lark. Down-regulation of chondrocyte aggrecan and type-II collagen gene expression correlates with increases in static compression magnitude and duration. J. Orthop. Res. 17:836–842, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Rhee, D. K. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J. Clin. Invest. 115:622–631, 2005.

    PubMed  CAS  Google Scholar 

  58. Roughley, P. J., and E. R. Lee. Cartilage proteoglycans: structure and potential functions. Microsc. Res. Technol. 28:385–397, 1994.

    Article  CAS  Google Scholar 

  59. Schmidt, T. A., B. L. Schumacher, T. J. Klein, M. S. Voegtline, and R. L. Sah. Synthesis of proteoglycan 4 by chondrocyte subpopulations in cartilage explants, monolayer cultures, and resurfaced cartilage cultures. Arthritis Rheum. 50:2849–2857, 2004.

    Article  PubMed  CAS  Google Scholar 

  60. Schmidt, T. A., N. S. Gastelum, E. H. Han, G. E. Nugent-Derfus, B. L. Schumacher, and R. L. Sah. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr. Cartil. 16:90–97, 2008.

    Article  PubMed  CAS  Google Scholar 

  61. Schumacher, B. L., J. A. Block, T. M. Schmid, M. B. Aydelotte, and K. E. Kuettner. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys. 311:144–152, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. Schuurman, W., D. Gawlitta, T. J. Klein, W. ten Hoope, M. H. P. van Rijen, W. J. A. Dhert, P. R. van Weeren, and J. Malda. Zonal chondrocyte subpopulations reacquire zone-specific characteristics during in vitro redifferentiation. Am. J. Sports Med. 37(Suppl 1):97S–104S, 2009.

    Article  PubMed  Google Scholar 

  63. Sharma, B., and J. H. Elisseeff. Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 32:148–159, 2004.

    Article  PubMed  Google Scholar 

  64. Sharma, B., C. G. Williams, T. K. Kim, D. Sun, A. Malik, M. Khan, K. Leong, and J. H. Elisseeff. Designing zonal organization into tissue-engineered cartilage. Tissue Eng. 13:405–414, 2007.

    Article  PubMed  CAS  Google Scholar 

  65. Shiazi, R., A. Shirazi-Adl, and M. Hurtig. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J. Biomech. 41:3340–3348, 2008.

    Article  Google Scholar 

  66. Shieh, A. C., E. J. Koay, and K. A. Athanasiou. Strain-dependent recovery behavior of single chondrocytes. Biomech. Model. Mechanobiol. 5:172–179, 2006.

    Article  PubMed  Google Scholar 

  67. Swann, D., and H. Slayter. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J. Biol. Chem. 256(11):5921–5925, 1981.

    PubMed  CAS  Google Scholar 

  68. Valhmu, W. B., E. J. Stazzone, N. M. Bachrach, F. Saed-Nejad, S. G. Fischer, V. C. Mow, and A. Ratcliffe. Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression. Arch. Biochem. Biophys. 353:29–36, 1998.

    Article  PubMed  CAS  Google Scholar 

  69. Vynios, D. H., N. Papageorgakopoulou, H. Sazakli, and C. P. Tsiganos. The interactions of cartilage proteoglycans with collagens are determined by their structures. Biochimie 83:899–906, 2001.

    Article  PubMed  CAS  Google Scholar 

  70. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J. Orthop. Res. 21:590–596, 2003.

    Article  PubMed  CAS  Google Scholar 

  71. Waldman, S. D., C. G. Spiteri, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng. 10:1323–1331, 2004.

    PubMed  CAS  Google Scholar 

  72. Waldman, S. D., D. C. Couto, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthr. Cartil. 14:323–330, 2006.

    Article  PubMed  CAS  Google Scholar 

  73. Waldman, S. D., M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. J. Orthop. Res. 21:132–138, 2006.

    Article  Google Scholar 

  74. Wimmer, M. A., M. Alini, and S. Grad. The effect of sliding velocity on chondrocytes activity in 3D scaffolds. J. Biomech. 42:424–429, 2009.

    Article  PubMed  Google Scholar 

  75. Wright, M., P. Jobanputra, C. Bavington, D. M. Salter, and G. Nuki. Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin. Sci. 90:61–71, 1996.

    PubMed  CAS  Google Scholar 

  76. Young, I. D., R. J. Stewart, L. Ailles, A. Mackie, and J. Gore. Synthesis of digoxigenin-labeled cRNA probes for nonisotopic in situ hybridization using reverse transcription polymerase chain reaction. Biotech. Histochem. 68:153–158, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Canadian Institutes of Health Research (CIHR).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Waldman.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaupp, J.A., Tse, M.Y., Pang, S.C. et al. The Effect of Moving Point of Contact Stimulation on Chondrocyte Gene Expression and Localization in Tissue Engineered Constructs. Ann Biomed Eng 41, 1106–1119 (2013). https://doi.org/10.1007/s10439-013-0763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0763-0

Keywords

Navigation