Skip to main content
Log in

Magnetic Nanoparticle Targeted Hyperthermia of Cutaneous Staphylococcus aureus Infection

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 04 December 2012

Abstract

The incidence of wound infections that do not adequately respond to standard-of-care antimicrobial treatment has been increasing. To address this challenge, a novel antimicrobial magnetic thermotherapy platform has been developed in which a high-amplitude, high-frequency, alternating magnetic field is used to rapidly heat magnetic nanoparticles that are bound to Staphylococcus aureus (S. aureus). The antimicrobial efficacy of this platform was evaluated in the treatment of both an in vitro culture model of S. aureus biofilm and a mouse model of cutaneous S. aureus infection. We demonstrated that an antibody-targeted magnetic nanoparticle bound to S. aureus was effective at thermally inactivating S. aureus and achieving accelerated wound healing without causing tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. American Diabetes Association. Consensus development conference on diabetic foot wound care: 7–8, April 1999, Boston, Massachusetts. Diabetes Care 22(1354):1360, 1999.

    Google Scholar 

  2. Amorena, B., E. Gracia, M. Monzon, J. Leiva, C. Oteiza, M. Perez, et al. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 44:43–55, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Anon. Editorial: Antibiotic resistance and topical treatment. Br. Med. J. 2:649–650, 1978.

  4. Bernthal, N. M., A. I. Stavrakis, F. Billi, J. S. Cho, T. J. Kremen, S. I. Simon, et al. A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE 5:e12580, 2010.

    Article  PubMed  Google Scholar 

  5. Bjarnsholt, T., K. Kirketerp-Moller, P. O. Jensen, K. G. Madsen, R. Phipps, K. Krogfelt, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 16:2–10, 2008.

    Article  PubMed  Google Scholar 

  6. Bucci, O. M. Electromagnetism, nanotechnologies and biology: New challenges and opportunities. Electromagnetic Theory (EMTS) on 2010 URSI International Symposium, pp. 77–80, 2010.

  7. Caubet, R., F. Pedarros-Caubet, M. Chu, and E. Freye. de Belem Rodrigues M, Moreau JM, et al. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother. 48:4662–4664, 2004.

    Article  PubMed  CAS  Google Scholar 

  8. Cebrian, G., J. Raso, S. Condon, and P. Manas. Acquisition of pulsed electric fields resistance in Staphylococcus aureus after exposure to heat and alkaline shocks. Food Control 25:407–414, 2012.

    Article  Google Scholar 

  9. Celli, J., and B. B. Finlay. Bacterial avoidance of phagocytosis. Trends Microbiol. 10:232–237, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Cho, J. S., E. M. Pietras, N. C. Garcia, R. I. Ramos, D. M. Farzam, H. R. Monroe, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120:1762–1773, 2010.

    Article  PubMed  Google Scholar 

  11. Cho, J. S., J. Zussman, N. P. Donegan, R. I. Ramos, N. C. Garcia, D. Z. Uslan, et al. Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. J. Invest. Dermatol. 131:907–915, 2011.

    Article  PubMed  CAS  Google Scholar 

  12. Dana, B., and Gannot, I. An analytic analysis of the diffusive-heat-flow equation for different magnetic field profiles for a single magnetic nanoparticle. J. Atomic Mol. Opt. Phys., 2012. DOI: 10.1155/2012/135708.

  13. Daum, R. S., and B. Spellberg. Progress toward a Staphylococcus aureus vaccine. Clin. Infect. Dis. 54:560–567, 2012.

    Article  PubMed  Google Scholar 

  14. Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2:114–122, 2003.

    Article  PubMed  CAS  Google Scholar 

  15. Di Poto, A., M. S. Sbarra, G. Provenza, L. Visai, and P. Speziale. The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 30:3158–3166, 2009.

    Article  PubMed  Google Scholar 

  16. Donlan, R. M., and J. W. Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167–193, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Dowd, S. E., R. D. Wolcott, Y. Sun, T. McKeehan, E. Smith, and D. Rhoads. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE 3:e3326, 2008.

    Article  PubMed  Google Scholar 

  18. Dudeck, O., K. Bogusiewicz, J. Pinkernelle, G. Gaffke, M. Pech, G. Wieners, et al. Local arterial infusion of superparamagnetic iron oxide particles in hepatocellular carcinoma: a feasibility and 3.0 T MRI study. Invest. Radiol. 41:527–535, 2006.

    Article  PubMed  Google Scholar 

  19. Edwards, R., and K. G. Harding. Bacteria and wound healing. Curr. Opin. Infect. Dis. 17:91–96, 2004.

    Article  PubMed  Google Scholar 

  20. Ensing, G. T., B. L. Roeder, J. L. Nelson, J. R. van Horn, H. C. van der Mei, H. J. Busscher, et al. Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo. J. Appl. Microbiol. 99:443–448, 2005.

    Article  PubMed  CAS  Google Scholar 

  21. Faust, N., F. Varas, L. M. Kelly, S. Heck, and T. Graf. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726, 2000.

    PubMed  CAS  Google Scholar 

  22. Fonder, M. A., G. S. Lazarus, D. A. Cowan, B. Aronson-Cook, A. R. Kohli, and A. J. Mamelak. Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol. 58:185–206, 2008.

    Article  PubMed  Google Scholar 

  23. Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3:948–958, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Giladi, M., Y. Porat, A. Blatt, E. Shmueli, Y. Wasserman, E. D. Kirson, et al. Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection. Antimicrob. Agents Chemother. 54:3212–3218, 2010.

    Article  PubMed  CAS  Google Scholar 

  25. Han, A., J. M. Zenilman, J. H. Melendez, M. E. Shirtliff, A. Agostinho, G. James, et al. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen. 19:532–541, 2011.

    Article  PubMed  Google Scholar 

  26. Hassani, M., G. Cebrian, P. Mannas, S. Condon, and R. Pagan. Induced thermotolerance under nonisothermal treatments of a heat sensitive and a resistant strain of Staphylococcus aureus in media of different pH. Lett. Appl. Microbiol. 43:619–624, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Ivkov, R., D. E. Bordelon, C. Cornejo, C. Gruttner, F. Westphal, and T. L. DeWeese. Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J. Appl. Phys. 109:124904, 2011.

    Article  Google Scholar 

  28. Ivkov, R., S. J. DeNardo, W. Daum, A. R. Foreman, R. C. Goldstein, V. S. Nemkov, et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin. Cancer Res. 11:7093s–7103s, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Jain, T. K., M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, and V. Labhasetwar. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5:316–327, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Jordan, A., R. Scholz, K. Maier-Hauff, F. K. van Landeghem, N. Waldoefner, U. Teichgraeber, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neurooncol. 78:7–14, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Keblinski, P., D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton. Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys. 100:054305, 2006.

    Article  Google Scholar 

  32. Kennedy, J., I. S. Blair, D. A. McDowell, and D. J. Bolton. An investigation of the thermal inactivation of Staphylococcus aureus and the potential for increased thermotolerance as a result of chilled storage. J. Appl. Microbiol. 99:1229–1235, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Kennedy, C. A., and J. P. O’Gara. Contribution of culture media and chemical properties of polystyrene tissue culture plates to biofilm development by Staphylococcus aureus. J. Med. Microbiol. 53:1171–1173, 2004.

    Article  PubMed  Google Scholar 

  34. Kim, M. H., J. L. Granick, C. Kwok, N. J. Walker, D. L. Borjesson, F. R. Curry, et al. Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution. Blood 117:3343–3352, 2011.

    Article  PubMed  CAS  Google Scholar 

  35. Kim, M. H., W. Liu, D. L. Borjesson, F. R. Curry, L. S. Miller, A. L. Cheung, et al. Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J. Invest. Dermatol. 128:1812–1820, 2008.

    Article  PubMed  CAS  Google Scholar 

  36. Lambrechts, S. A., T. N. Demidova, M. C. Aalders, T. Hasan, and M. R. Hamblin. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci. 4:503–509, 2005.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, J. H., J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6:418–422, 2011.

    Article  PubMed  CAS  Google Scholar 

  38. Liu, C., A. Bayer, S. E. Cosgrove, R. S. Daum, S. K. Fridkin, R. J. Gorwitz, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 52:e18–e55, 2011.

    Article  PubMed  Google Scholar 

  39. Luciani, N., C. Wilhelm, and F. Gazeau. The role of cell-released microvesicles in the intercellular transfer of magnetic nanoparticles in the monocyte/macrophage system. Biomaterials 31:7061–7069, 2010.

    Article  PubMed  CAS  Google Scholar 

  40. Maier-Hauff, K., R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81:53–60, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Miller, L. S., R. M. O’Connell, M. A. Gutierrez, E. M. Pietras, A. Shahangian, C. E. Gross, et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24:79–91, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Monroe, D. Looking for chinks in the armor of bacterial biofilms. PLoS Biol. 5:e307, 2007.

    Article  PubMed  Google Scholar 

  43. Pankhurst, Q. A., J. Connolly, S. K. Jones, and J. Dobson. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36:R167–R181, 2003.

    Article  CAS  Google Scholar 

  44. Parsek, M. R., and P. K. Singh. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57:677–701, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Pitt, W. G., M. O. McBride, J. K. Lunceford, R. J. Roper, and R. D. Sagers. Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob. Agents Chemother. 38:2577–2582, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Ray, P. C., S. A. Khan, A. K. Singh, D. Senapati, and Z. Fan. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 41:3193–3209, 2012.

    Article  PubMed  CAS  Google Scholar 

  47. Rooijakkers, S. H., K. P. van Kessel, and J. A. van Strijp. Staphylococcal innate immune evasion. Trends Microbiol. 13:596–601, 2005.

    Article  PubMed  CAS  Google Scholar 

  48. Smith, J. A., and J. J. O’Connor. Nasal carriage of Staphylococcus aureus in diabetes mellitus. Lancet 2:776–777, 1966.

    Article  PubMed  CAS  Google Scholar 

  49. Spinowitz, B. S., M. H. Schwenk, P. M. Jacobs, W. K. Bolton, M. R. Kaplan, C. Charytan, et al. The safety and efficacy of ferumoxytol therapy in anemic chronic kidney disease patients. Kidney Int. 68:1801–1807, 2005.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas, L., L. Dekker, M. Kallumadil, P. Southern, M. Wilson, S. Nair, et al. Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem. 19:6529–6535, 2009.

    Article  CAS  Google Scholar 

  51. Tuazon, C. U., A. Perez, T. Kishaba, and J. N. Sheagren. Staphylococcus aureus among insulin-injecting diabetic patients. An increased carrier rate. JAMA. 231:1272, 1975.

    Article  PubMed  CAS  Google Scholar 

  52. van der Borden, A. J., P. G. Maathuis, E. Engels, G. Rakhorst, H. C. van der Mei, H. J. Busscher, et al. Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model. Biomaterials 28:2122–2126, 2007.

    Article  PubMed  Google Scholar 

  53. Wintermute, E. H., and P. A. Silver. Dynamics in the mixed microbial concourse. Genes Dev. 24:2603–2614, 2010.

    Article  PubMed  CAS  Google Scholar 

  54. Zolfaghari, P. S., S. Packer, M. Singer, S. P. Nair, J. Bennett, C. Street, et al. In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol. 9:27, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Thomas Graf (Center for Genomic Regulation, Barcelona Spain) and Dr. Ambros Cheung (Dartmouth Medical School) for generously providing EGFP-lys-mice and the bioluminescent strain of S. aureus. We also thank Dr. Jose Renau (UC Santa Cruz) for use of the FLIR SC8000 thermal camera. This research was supported by NIH AI47294 and a generous grant from the Robert S. and Star Pepper Foundation to SIS, as well as other private donors.

Conflict of interests

Joseph Nayfech (Qteris, Inc.) declares competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott I. Simon.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MH., Yamayoshi, I., Mathew, S. et al. Magnetic Nanoparticle Targeted Hyperthermia of Cutaneous Staphylococcus aureus Infection. Ann Biomed Eng 41, 598–609 (2013). https://doi.org/10.1007/s10439-012-0698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0698-x

Keywords

Navigation