Skip to main content
Log in

The Effects of a Valgus Collapse Knee Position on In Vivo ACL Elongation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There are conflicting data regarding what motions increase ACL injury risk. More specifically, the mechanical role of valgus collapse positions during ACL injury remains controversial. Our objective was to evaluate ACL elongation in a model that mimics knee movements thought to occur during ACL injury. Eight healthy male subjects were imaged using MR and biplanar fluoroscopy to measure the in vivo elongation of the ACL and its functional bundles during three static knee positions: full extension, 30° of flexion, and a position intended to mimic a valgus collapse position described in the literature. For this study, the valgus collapse position consisted of 30° of knee flexion, internal rotation of the hip, and 10° of external tibial rotation. ACL length decreased significantly from full extension (30.2 ± 2.6 mm) to 30° of flexion (27.1 ± 2.2 mm). ACL length further decreased in the valgus collapse position (25.6 ± 2.4 mm). Both functional bundles of the ACL followed similar trends with regards to decreases in length in each of the three positions. Since strain would follow patterns of ACL length, landing on an extended knee may be a more relevant risk factor for ACL injuries than the valgus collapse position in males. Future studies should evaluate the effects of dynamic motion patterns on in vivo ACL strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abebe, E. S., J. P. Kim, G. M. Utturkar, et al. The effect of femoral tunnel placement on ACL graft orientation and length during in vivo knee flexion. J. Biomech. 44(10):1914–1920, 2011.

    Article  PubMed  Google Scholar 

  2. Abebe, E. S., C. T. Moorman, 3rd, T. S. Dziedzic, et al. Femoral tunnel placement during anterior cruciate ligament reconstruction: an in vivo imaging analysis comparing transtibial and 2-incision tibial tunnel-independent techniques. Am. J. Sports Med. 37(10):1904–1911, 2009.

    Article  PubMed  Google Scholar 

  3. Agel, J., E. A. Arendt, and B. Bershadsky. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am. J. Sports Med. 33(4):524–530, 2005.

    Article  PubMed  Google Scholar 

  4. Andriacchi, T. P., A. Mundermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32(3):447–457, 2004.

    Article  PubMed  Google Scholar 

  5. Arms, S. W., M. H. Pope, R. J. Johnson, R. A. Fischer, I. Arvidsson, and E. Eriksson. The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am. J. Sports Med. 12(1):8–18, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Barber-Westin, S. D., F. R. Noyes, S. T. Smith, and T. M. Campbell. Reducing the risk of noncontact anterior cruciate ligament injuries in the female athlete. Phys. Sportsmed. 37(3):49–61, 2009.

    Article  PubMed  Google Scholar 

  7. Berns, G. S., M. L. Hull, and H. A. Patterson. Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J. Orthop. Res. 10(2):167–176, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Beynnon, B. D., B. C. Fleming, R. J. Johnson, C. E. Nichols, P. A. Renstrom, and M. H. Pope. Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am. J. Sports Med. 23(1):24–34, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Beynnon, B. D., R. J. Johnson, B. C. Fleming, C. J. Stankewich, P. A. Renstrom, and C. E. Nichols. The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am. J. Sports Med. 25(6):823–829, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Boden, B. P., G. S. Dean, J. A. Feagin, Jr., and W. E. Garrett, Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578, 2000.

    PubMed  CAS  Google Scholar 

  11. Boden, B. P., J. S. Torg, S. B. Knowles, and T. E. Hewett. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am. J. Sports Med. 37(2):252–259, 2009.

    Article  PubMed  Google Scholar 

  12. Caputo, A. M., J. Y. Lee, C. E. Spritzer, et al. In vivo kinematics of the tibiotalar joint after lateral ankle instability. Am. J. Sports Med. 37(11):2241–2248, 2009.

    Article  PubMed  Google Scholar 

  13. Cochrane, J. L., D. G. Lloyd, A. Buttfield, H. Seward, and J. McGivern. Characteristics of anterior cruciate ligament injuries in Australian football. J. Sci. Med. Sport 10(2):96–104, 2007.

    Article  PubMed  Google Scholar 

  14. DeFrate, L. E., K. W. Nha, R. Papannagari, J. M. Moses, T. J. Gill, and G. Li. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion. J. Biomech. 40(8):1716–1722, 2007.

    Article  PubMed  Google Scholar 

  15. DeFrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34(8):1240–1246, 2006.

    Article  PubMed  Google Scholar 

  16. Delfico, A. J., and W. E. Garrett, Jr. Mechanisms of injury of the anterior cruciate ligament in soccer players. Clin. Sports Med. 17(4):779–785, vii, 1998.

    Google Scholar 

  17. DeMorat, G., P. Weinhold, T. Blackburn, S. Chudik, and W. Garrett. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am. J. Sports Med. 32(2):477–483, 2004.

    Article  PubMed  Google Scholar 

  18. Deneweth, J. M., M. J. Bey, S. G. McLean, T. R. Lock, P. A. Kolowich, and S. Tashman. Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing. Am. J. Sports Med. 38(9):1820–1828, 2010.

    Article  PubMed  Google Scholar 

  19. Fernandez, J. W., M. Akbarshahi, K. M. Crossley, K. B. Shelburne, and M. G. Pandy. Model predictions of increased knee joint loading in regions of thinner articular cartilage after patellar tendon adhesion. J. Orthop. Res. 29(8):1168–1177, 2011.

    Article  PubMed  Google Scholar 

  20. Fithian, D. C., E. W. Paxton, M. L. Stone, et al. Prospective trial of a treatment algorithm for the management of the anterior cruciate ligament-injured knee. Am. J. Sports Med. 33(3):335–346, 2005.

    Article  PubMed  Google Scholar 

  21. Fleming, B. C., B. D. Beynnon, P. A. Renstrom, G. D. Peura, C. E. Nichols, and R. J. Johnson. The strain behavior of the anterior cruciate ligament during bicycling. An in vivo study. Am. J. Sports Med. 26(1):109–118, 1998.

    PubMed  CAS  Google Scholar 

  22. Fleming, B. C., H. L. Oksendahl, W. A. Mehan, et al. Delayed gadolinium-enhanced MR imaging of cartilage (dGEMRIC) following ACL injury. Osteoarthr. Cartil. 18(5):662–667, 2010.

    Article  PubMed  CAS  Google Scholar 

  23. Fleming, B. C., P. A. Renstrom, B. D. Beynnon, et al. The effect of weightbearing and external loading on anterior cruciate ligament strain. J. Biomech. 34(2):163–170, 2001.

    Article  PubMed  CAS  Google Scholar 

  24. Gianotti, S. M., S. W. Marshall, P. A. Hume, and L. Bunt. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J. Sci. Med. Sport 12(6):622–627, 2009.

    Article  PubMed  Google Scholar 

  25. Gilchrist, J., B. R. Mandelbaum, H. Melancon, et al. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am. J. Sports Med. 36(8):1476–1483, 2008.

    Article  PubMed  Google Scholar 

  26. Griffin, L. Y., M. J. Albohm, E. A. Arendt, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am. J. Sports Med. 34(9):1512–1532, 2006.

    Article  PubMed  Google Scholar 

  27. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105(2):136–144, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Harner, C. D., G. H. Baek, T. M. Vogrin, G. J. Carlin, S. Kashiwaguchi, and S. L. Woo. Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Hewett, T. E., T. N. Lindenfeld, J. V. Riccobene, and F. R. Noyes. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am. J. Sports Med. 27(6):699–706, 1999.

    PubMed  CAS  Google Scholar 

  30. Hewett, T. E., G. D. Myer, and K. R. Ford. Decrease in neuromuscular control about the knee with maturation in female athletes. J. Bone Joint Surg. Am. 86-A(8):1601–1608, 2004.

    PubMed  Google Scholar 

  31. Hewett, T. E., G. D. Myer, K. R. Ford, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33(4):492–501, 2005.

    Article  PubMed  Google Scholar 

  32. Hirokawa, S., M. Solomonow, Y. Lu, Z. P. Lou, and R. D’Ambrosia. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am. J. Sports Med. 20(3):299–306, 1992.

    Article  PubMed  CAS  Google Scholar 

  33. Jordan, S. S., L. E. DeFrate, K. W. Nha, R. Papannagari, T. J. Gill, and G. Li. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. Am. J. Sports Med. 35(4):547–554, 2007.

    Article  PubMed  Google Scholar 

  34. Koga, H., A. Nakamae, Y. Shima, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 38(11):2218–2225, 2010.

    Article  PubMed  Google Scholar 

  35. Krosshaug, T., and R. Bahr. A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J. Biomech. 38(4):919–929, 2005.

    Article  PubMed  Google Scholar 

  36. Krosshaug, T., A. Nakamae, B. P. Boden, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am. J. Sports Med. 35(3):359–367, 2007.

    Article  PubMed  Google Scholar 

  37. Li, G., L. E. Defrate, H. E. Rubash, and T. J. Gill. In vivo kinematics of the ACL during weight-bearing knee flexion. J. Orthop. Res. 23(2):340–344, 2005.

    Article  PubMed  Google Scholar 

  38. Li, G., L. E. DeFrate, H. Sun, and T. J. Gill. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am. J. Sports Med. 32(6):1415–1420, 2004.

    Article  PubMed  Google Scholar 

  39. Lohmander, L. S., P. M. Englund, L. L. Dahl, and E. M. Roos. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35(10):1756–1769, 2007.

    Article  PubMed  Google Scholar 

  40. Malinzak, R. A., S. M. Colby, D. T. Kirkendall, B. Yu, and W. E. Garrett. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin. Biomech. (Bristol, Avon) 16(5):438–445, 2001.

    Article  CAS  Google Scholar 

  41. Mandelbaum, B. R., H. J. Silvers, D. S. Watanabe, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 33(7):1003–1010, 2005.

    Article  PubMed  Google Scholar 

  42. Markolf, K. L., D. M. Burchfield, M. M. Shapiro, M. F. Shepard, G. A. Finerman, and J. L. Slauterbeck. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 13(6):930–935, 1995.

    Article  PubMed  CAS  Google Scholar 

  43. Miranda, D. L., J. B. Schwartz, A. C. Loomis, E. L. Brainerd, B. C. Fleming, and J. J. Crisco. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J. Biomech. Eng. 133(12):121002, 2011.

    Article  PubMed  Google Scholar 

  44. Myers, C. A., M. R. Torry, D. S. Peterson, et al. Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am. J. Sports Med. 39(8):1714–1722, 2011.

    Article  PubMed  Google Scholar 

  45. Nunley, R. M., D. Wright, J. B. Renner, B. Yu, and W. E. Garrett. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res. Sports Med. 11:173–185, 2003.

    Google Scholar 

  46. Olsen, O. E., G. Myklebust, L. Engebretsen, and R. Bahr. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am. J. Sports Med. 32(4):1002–1012, 2004.

    Article  PubMed  Google Scholar 

  47. Pfeiffer, R. P., K. G. Shea, D. Roberts, S. Grandstrand, and L. Bond. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J. Bone Joint Surg. Am. 88(8):1769–1774, 2006.

    Article  PubMed  Google Scholar 

  48. Quatman, C. E., and T. E. Hewett. The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br. J. Sports Med. 43(5):328–335, 2009.

    Article  PubMed  CAS  Google Scholar 

  49. Salmon, L. J., V. J. Russell, K. Refshauge, et al. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am. J. Sports Med. 34(5):721–732, 2006.

    Article  PubMed  Google Scholar 

  50. Scanlan, S. F., K. Blazek, A. M. Chaudhari, M. R. Safran, and T. P. Andriacchi. Graft orientation influences the knee flexion moment during walking in patients with anterior cruciate ligament reconstruction. Am. J. Sports Med. 37(11):2173–2178, 2009.

    Article  PubMed  Google Scholar 

  51. Scanlan, S. F., A. M. Chaudhari, C. O. Dyrby, and T. P. Andriacchi. Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J. Biomech. 43(9):1817–1822, 2010.

    Article  PubMed  Google Scholar 

  52. Schmitz, R. J., S. J. Shultz, and A. D. Nguyen. Dynamic valgus alignment and functional strength in males and females during maturation. J. Athl. Train. 44(1):26–32, 2009.

    Article  PubMed  Google Scholar 

  53. Shin, C. S., A. M. Chaudhari, and T. P. Andriacchi. The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J. Biomech. 42(3):280–285, 2009.

    Article  PubMed  Google Scholar 

  54. Soderman, K., S. Werner, T. Pietila, B. Engstrom, and H. Alfredson. Balance board training: prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg. Sports Traumatol. Arthrosc. 8(6):356–363, 2000.

    Article  PubMed  CAS  Google Scholar 

  55. Tashman, S., D. Collon, K. Anderson, P. Kolowich, and W. Anderst. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am. J. Sports Med. 32(4):975–983, 2004.

    Article  PubMed  Google Scholar 

  56. Taylor, K. A., M. E. Terry, G. M. Utturkar, et al. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J. Biomech. 44(3):365–371, 2011.

    Article  PubMed  CAS  Google Scholar 

  57. Weinhold, P. S., J. D. Stewart, H. Y. Liu, C. F. Lin, W. E. Garrett, and B. Yu. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain. Injury 38(8):973–978, 2007.

    Article  PubMed  Google Scholar 

  58. Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin. Biomech. (Bristol, Avon) 21(9):977–983, 2006.

    Article  Google Scholar 

  59. Wu, J. L., A. Hosseini, M. Kozanek, H. R. Gadikota, T. J. T. Gill, and G. Li. Kinematics of the anterior cruciate ligament during gait. Am. J. Sports Med. 38(7):1475–1482, 2010.

    Article  PubMed  Google Scholar 

  60. Yu, B., and W. E. Garrett. Mechanisms of non-contact ACL injuries. Br. J. Sports Med. 41(Suppl 1):i47–i51, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (Grant no. R03AR055659) and a grant from the National Football League Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis E. DeFrate.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utturkar, G.M., Irribarra, L.A., Taylor, K.A. et al. The Effects of a Valgus Collapse Knee Position on In Vivo ACL Elongation. Ann Biomed Eng 41, 123–130 (2013). https://doi.org/10.1007/s10439-012-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0629-x

Keywords

Navigation