Skip to main content
Log in

Time–Frequency Approaches for the Detection of Interactions and Temporal Properties in Renal Autoregulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We compare the influence of time–frequency methods on analysis of time-varying renal autoregulation properties. Particularly, we examine if detection probabilities are similar for amplitude and frequency modulation for a modulated simulation signal among five time–frequency approaches, and if time-varying changes in system gain are detected using four approaches for estimating time-varying transfer functions. Detection of amplitude and frequency modulation varied among methods and was dependent upon background noise added to the simulated data. Three non-parametric time–frequency methods accurately detected modulation at low frequencies across noise levels but not high frequencies; while the converse was true for a fourth, and a fifth non-parametric approach was not capable of modulation detection. When applied to estimation of time-varying transfer functions, the parametric approach provided the most accurate estimations of system gain changes, detecting a 1 dB step increase. Application of the appropriate methods to laser Doppler recordings of cortical blood flow and arterial pressure data in anesthetized rats reaffirm the presence of time-varying dynamics in renal autoregulation. An increase in the peak system gain and detection of amplitude modulation of the Myogenic mechanism both occurred after inhibition of nitric oxide synthase, suggesting a connection between the operation of underlying regulators and system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bidani, A. K., R. Hacioglu, I. Abu-Amarah, G. A. Williamson, R. Loutzenhiser, and K. A. Griffin. “Step” vs. “dynamic” autoregulation: implications for susceptibility to hypertensive injury. Am. J. Physiol. Renal Physiol. 285:F113–F120, 2003.

    PubMed  CAS  Google Scholar 

  2. Chon, K. H., R. Raghavan, Y.-M. Chen, D. J. Marsh, and K.-P. Yip. Interactions of TGF-dependent and myogenic oscillations in tubular pressure. Am. J. Physiol. Renal Physiol. 288:F298–F307, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. Chon, K. H., Y. Zhong, L. C. Moore, N. H. Holstein-Rathlou, and W. A. Cupples. Analysis of nonstationarity in renal autoregulation mechanisms using time-varying transfer and coherence functions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295:R821–R828, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Cupples, W. A. Interactions contributing to kidney blood flow autoregulation. Curr. Opin. Nephrol. Hypertens. 16:39–45, 2007. doi:10.1097/MNH.0b013e3280117fc7.

  5. Cupples, W. A., and B. Braam. Assessment of renal autoregulation. Am. J. Physiol. Renal Physiol. 292:F1105–F1123, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Cupples, W. A., P. Novak, V. Novak, and F. C. Salevsky. Spontaneous blood pressure fluctuations and renal blood flow dynamics. Am. J. Physiol. Renal Physiol. 270:F82–F89, 1996.

    CAS  Google Scholar 

  7. Hlawatsch, F., and G. F. Boudreaux-Bartels. Linear and quadratic time-frequency signal representations. IEEE Signal Process. Mag. 9:21–67, 1992.

    Article  Google Scholar 

  8. Holstein-Rathlou, N. H., A. J. Wagner, and D. J. Marsh. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats. Am. J. Physiol. Renal Physiol. 260:F53–F68, 1991.

    CAS  Google Scholar 

  9. Just, A., and W. J. Arendshorst. Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R619–R631, 2003.

    PubMed  Google Scholar 

  10. Marsh, D. J., O. V. Sosnovtseva, A. N. Pavlov, K.-P. Yip, and N.-H. Holstein-Rathlou. Frequency encoding in renal blood flow regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R1160–R1167, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Marsh, D. J., I. Toma, O. V. Sosnovtseva, J. Peti-Peterdi, and N.-H. Holstein-Rathlou. Electrotonic vascular signal conduction and nephron synchronization. Am. J. Physiol. Renal Physiol. 296:F751–F761, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Pavlov, A. N., O. V. Sosnovtseva, O. N. Pavlova, E. Mosekilde, and N.-H. Holstein-Rathlou. Characterizing multimode interaction in renal autoregulation. Physiol. Meas. 29:945, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Pinna, G., and R. Maestri. Reliability of transfer function estimates in cardiovascular variability analysis. Med. Biol. Eng. Comput. 39:338–347, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Pires, S. L. S., C. Barrès, J. Sassard, and C. Julien. Renal blood flow dynamics and arterial pressure lability in the conscious rat. Hypertension 38:147–152, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Pittner, J., M. Wolgast, D. Casellas, and A. E. G. Persson. Increased shear stress-released NO and decreased endothelial calcium in rat isolated perfused juxtamedullary nephrons. Kidney Int. 67:227–236, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Powers, E. J., H. S. Don, J. Y. Hong, Y. C. Kim, G. A. Hallock, and R. L. Hickok. Spectral analysis of nonstationary plasma fluctuation data via digital complex demodulation. Rev. Sci. Instrum. 59:1757–1759, 1988.

    Article  CAS  Google Scholar 

  17. Raghavan, R., X. Chen, K.-P. Yip, D. J. Marsh, and K. H. Chon. Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR. Am. J. Physiol. Renal Physiol. 290:F720–F732, 2006.

    Article  PubMed  CAS  Google Scholar 

  18. Sheng, L., J. Ki Hwan, and K. H. Chon. A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry [and application to blood flow/pressure data]. IEEE Trans. Biomed. Eng. 48:1116–1124, 2001.

    Article  Google Scholar 

  19. Shi, Y., X. Wang, K. H. Chon, and W. A. Cupples. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R982–R991, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Siu, K. L., B. Sung, W. A. Cupples, L. C. Moore, and K. H. Chon. Detection of low-frequency oscillations in renal blood flow. Am. J. Physiol. Renal Physiol. 297:F155–F162, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Sosnovtseva, O. V., A. N. Pavlov, E. Mosekilde, and N.-H. Holstein-Rathlou. Bimodal oscillations in nephron autoregulation. Phys. Rev. E 66:061909, 2002.

    Article  CAS  Google Scholar 

  22. Sosnovtseva, O. V., A. N. Pavlov, E. Mosekilde, N.-H. Holstein-Rathlou, and D. J. Marsh. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E 70:031915, 2004.

    Article  CAS  Google Scholar 

  23. Sosnovtseva, O. V., A. N. Pavlov, E. Mosekilde, N.-H. Holstein-Rathlou, and D. J. Marsh. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics. Physiol. Meas. 26:351, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Sosnovtseva, O. V., A. N. Pavlov, E. Mosekilde, K.-P. Yip, N.-H. Holstein-Rathlou, and D. J. Marsh. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats. Am. J. Physiol. Renal Physiol. 293:F1545–F1555, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Sosnovtseva, O. V., A. N. Pavlov, O. N. Pavlova, E. Mosekilde, and N.-H. Holstein-Rathlou. The effect of L-NAME on intra- and inter-nephron synchronization. Eur. J. Pharm. Sci. 36:39–50, 2009.

    Article  PubMed  CAS  Google Scholar 

  26. Torrence, C., and G. P. Compo. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79:61–78, 1998.

    Article  Google Scholar 

  27. Wang, X., and W. A. Cupples. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats. Can. J. Physiol. Pharmacol. 79:238–245, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, H., K. L. Siu, K. Ju, and K. H. Chon. A high resolution approach to estimating time-frequency spectra and their amplitudes. Ann. Biomed. Eng. 34:326–338, 2006.

    Article  PubMed  Google Scholar 

  29. Whitcher, B., P. F. Craigmile, and P. Brown. Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs. Signal. Process. 85:2065–2081, 2005.

    Article  Google Scholar 

  30. Yip, K. P., N. H. Holstein-Rathlou, and D. J. Marsh. Mechanisms of temporal variation in single-nephron blood flow in rats. Am. J. Physiol. Renal Physiol. 264:F427–F434, 1993.

    CAS  Google Scholar 

  31. Zhao, H., W. A. Cupples, K. H. Ju, and K. H. Chon. Time-varying causal coherence function and its application to renal blood pressure and blood flow data. IEEE Trans. Biomed. Eng. 54:2142–2150, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao, H., S. Lu, R. Zou, K. Ju, and K. Chon. Estimation of time-varying coherence function using time-varying transfer functions. Ann. Biomed. Eng. 33:1582–1594, 2005.

    Article  PubMed  Google Scholar 

  33. Zou, R., W. A. Cupples, K. R. Yip, N. H. Holstein-Rathlou, and K. H. Chon. Time-varying properties of renal autoregulatory mechanisms. IEEE Trans. Biomed. Eng. 49:1112–1120, 2002.

    Article  PubMed  Google Scholar 

  34. Zou, R., H. Wang, and K. H. Chon. A robust time-varying identification algorithm using basis functions. Ann. Biomed. Eng. 31:840–853, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Canadian Institutes of Health Research Grant MOP-102694 to WAC, BB, and KHC. CGS was supported by an American Heart Association Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki H. Chon.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scully, C.G., Siu, K.L., Cupples, W.A. et al. Time–Frequency Approaches for the Detection of Interactions and Temporal Properties in Renal Autoregulation. Ann Biomed Eng 41, 172–184 (2013). https://doi.org/10.1007/s10439-012-0625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0625-1

Keywords

Navigation