Skip to main content

Advertisement

Log in

Carbachol-Induced Volume Adaptation in Mouse Bladder and Length Adaptation via Rhythmic Contraction in Rabbit Detrusor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The length–tension (LT) relationships in rabbit detrusor smooth muscle (DSM) are similar to those in vascular and airway smooth muscles and exhibit short-term length adaptation characterized by LT curves that shift along the length axis as a function of activation and strain history. In contrast to skeletal muscle, the length–active tension (LT a) curve for rabbit DSM strips does not have a unique peak tension value with a single ascending and descending limb. Instead, DSM can exhibit multiple ascending and descending limbs, and repeated KCl-induced contractions at a particular muscle length on an ascending or descending limb display increasingly greater tension. In the present study, mouse bladder strips with and without urothelium exhibited KCl-induced and carbachol-induced length adaptation, and the pressure–volume relationship in mouse whole bladder displayed short-term volume adaptation. Finally, prostaglandin-E2-induced low-level rhythmic contraction produced length adaptation in rabbit DSM strips. A likely role of length adaptation during bladder filling is to prepare DSM cells to contract efficiently over a broad range of volumes. Mammalian bladders exhibit spontaneous rhythmic contraction (SRC) during the filling phase and SRC is elevated in humans with overactive bladder (OAB). The present data identify a potential physiological role for SRC in bladder adaptation and motivate the investigation of a potential link between short-term volume adaptation and OAB with impaired contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

0-Ca:

Nominally Ca2+-free solution consisting of PSS without CaCl2

APS:

Adjustable preload stiffness

CCh:

Carbachol

DSM:

Detrusor smooth muscle

KPSS:

PSS modified to include 110 mM KCl substituted isosmotically for NaCl

L ref :

Reference length corresponding to T ref

L s :

Slack length

LT :

Length–tension

LT a :

Length–active tension

LT p :

Length–preload tension

PGE2 :

Prostaglandin-E2

PSS:

Physiological salt solution

P ref :

Reference pressure, a peak active pressure value on a PV curve

PV :

Pressure–volume

RC:

Rhythmic contraction

SRC:

Spontaneous rhythmic contraction

T a :

Active tension

T p :

Preload tension

T ref :

Reference tension, a peak T a value on a LT a curve

T t :

Total tension

Uro:

Urothelium

V ref :

Reference volume corresponding to P ref

References

  1. Abrams, P., and A. J. Wein. Introduction: overactive bladder and its treatment. Urology 55:1–2, 2000.

    Article  Google Scholar 

  2. Almasri, A. M., P. H. Ratz, H. Bhatia, A. P. Klausner, and J. E. Speich. Rhythmic contraction generates adjustable passive stiffness in rabbit detrusor. J. Appl. Physiol. 108(3):544–553, 2010.

    Article  PubMed  Google Scholar 

  3. Almasri, A. M., P. H. Ratz, and J. E. Speich. Length adaptation of the passive-to-active tension ratio in rabbit detrusor. Ann. Biomed. Eng. 38(8):2594–2605, 2010.

    Article  PubMed  Google Scholar 

  4. Bai, T. R., J. H. Bates, V. Brusasco, B. Camoretti-Mercado, P. Chitano, L. H. Deng, M. Dowell, B. Fabry, L. E. Ford, J. J. Fredberg, W. T. Gerthoffer, S. H. Gilbert, S. J. Gunst, C. M. Hai, A. J. Halayko, S. J. Hirst, A. L. James, L. J. Janssen, K. A. Jones, G. G. King, O. J. Lakser, R. K. Lambert, A. M. Lauzon, K. R. Lutchen, G. N. Maksym, R. A. Meiss, S. M. Mijailovich, H. W. Mitchell, R. W. Mitchell, W. Mitzner, T. M. Murphy, P. D. Paré, R. R. Schellenberg, C. Y. Seow, G. C. Sieck, P. G. Smith, A. V. Smolensky, J. Solway, N. L. Stephens, A. G. Stewart, D. D. Tang, and L. Wang. On the terminology for describing the length-force relationship and its changes in airway smooth muscle. J. Appl. Physiol. 97:2029–2034, 2004.

    Article  PubMed  Google Scholar 

  5. Bednarek, M. L., J. E. Speich, A. S. Miner, and P. H. Ratz. Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D. Am. J. Physiol. Heart Circ. Physiol. 300(4):H1166–H1173, 2011.

    Article  PubMed  CAS  Google Scholar 

  6. Bosse, Y., L. Y. Chin, P. D. Pare, and C. Y. Seow. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40(1):13–18, 2009.

    Article  PubMed  CAS  Google Scholar 

  7. Bosse, Y., D. Solomon, L. Y. Chin, K. Lian, P. D. Pare, and C. Y. Seow. Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness. Am. J. Physiol. Lung Cell. Mol. Physiol. 298(3):L277–L287, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, S. M., L. M. Bentcheva-Petkova, L. Liu, K. L. Hristov, M. Chen, W. F. Kellett, A. L. Meredith, R. W. Aldrich, M. T. Nelson, and G. V. Petkov. Beta-adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+ channel. Am. J. Physiol. Renal Physiol. 295(4):F1149–F1157, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Collins, C., A. P. Klausner, B. Herrick, H. P. Koo, A. S. Miner, S. C. Henderson, and P. H. Ratz. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of cajal. J. Cell Mol. Med. 13(9B):3236–3250, 2009.

    Article  PubMed  Google Scholar 

  10. Drake, M. J., I. J. Harvey, and J. I. Gillespie. Autonomous activity in the isolated guinea pig bladder. Exp. Physiol. 88(1):19–30, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Drake, M. J., I. J. Harvey, J. I. Gillespie, and W. A. Van Duyl. Localized contractions in the normal human bladder and in urinary urgency. BJU Int. 95(7):1002–1005, 2005.

    Article  PubMed  Google Scholar 

  12. Dulin, N. O., D. J. Fernandes, M. Dowell, S. Bellam, J. McConville, O. Lakser, R. Mitchell, B. Camoretti-Mercado, P. Kogut, and J. Solway. What evidence implicates airway smooth muscle in the cause of BHR? Clin. Rev. Allergy Immunol. 24(1):73–84, 2003.

    Article  PubMed  Google Scholar 

  13. Ford, L. E. Plasticity in airway smooth muscle: an update. Can. J. Physiol. Pharmacol. 83(10):841–850, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Ford, L. E., C. Y. Seow, and V. R. Pratusevich. Plasticity in smooth muscle, a hypothesis. Can. J. Physiol. Pharmacol. 72(11):1320–1324, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Geeves, M. A., R. Fedorov, and D. J. Manstein. Molecular mechanism of actomyosin-based motility. Cell. Mol. Life Sci. 62(13):1462–1477, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Gillespie, J. I. The autonomous bladder: a view of the origin of bladder overactivity and sensory urge. BJU Int. 93(4):478–483, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Gillespie, J. I. Modulation of autonomous contractile activity in the isolated whole bladder of the guinea pig. BJU Int. 93(3):393–400, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Gordon, A. M., A. F. Huxley, and F. J. Julian. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184(1):170–192, 1966.

    PubMed  CAS  Google Scholar 

  19. Granzier, H. L., and T. C. Irving. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 68(3):1027–1044, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Gunst, S. J., R. A. Meiss, M. F. Wu, and M. Rowe. Mechanisms for the mechanical plasticity of tracheal smooth muscle. Am. J. Physiol. 268(5 Pt 1):C1267–C1276, 1995.

    PubMed  CAS  Google Scholar 

  21. Gunst, S. J., D. D. Tang, and A. Opazo Saez. Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung. Respir. Physiol. Neurobiol. 137(2–3):151–168, 2003.

    Article  PubMed  Google Scholar 

  22. Hai, C. M., and R. A. Murphy. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254(1 Pt 1):C99–C106, 1988.

    PubMed  CAS  Google Scholar 

  23. Iorga, B., N. Adamek, and M. A. Geeves. The slow skeletal muscle isoform of myosin shows kinetic features common to smooth and non-muscle myosins. J. Biol. Chem. 282(6):3559–3570, 2007.

    Article  PubMed  CAS  Google Scholar 

  24. Jezior, J. R., J. D. Brady, D. I. Rosenstein, K. A. McCammon, A. S. Miner, and P. H. Ratz. Dependency of detrusor contractions on calcium sensitization and calcium entry through LOE-908-sensitive channels. Br. J. Pharmacol. 134:78–87, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Kanai, A., J. Roppolo, Y. Ikeda, I. Zabbarova, C. Tai, L. Birder, D. Griffiths, W. de Groat, and C. Fry. Origin of spontaneous activity in neonatal and adult rat bladders and its enhancement by stretch and muscarinic agonists. Am. J. Physiol. Renal Physiol. 292(3):F1065–F1072, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Klausner, A. P., C. M. Johnson, A. B. Stike, J. E. Speich, V. Sabarwal, A. S. Miner, M. Cleary, H. P. Koo, and P. H. Ratz. Prostaglandin E2 mediates spontaneous rhythmic contraction in rabbit detrusor muscle. Can. J. Urol. 18(2):5608–5614, 2011.

    PubMed  Google Scholar 

  27. Kock, N. G., and R. Pompeius. Studies on the nature of the rhythmic activity of the human bladder. Invest. Urol. 1:253–261, 1963.

    PubMed  CAS  Google Scholar 

  28. Mills, I. W., J. E. Greenland, G. McMurray, R. McCoy, K. M. Ho, J. G. Noble, and A. F. Brading. Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation. J. Urol. 163(2):646–651, 2000.

    Article  PubMed  CAS  Google Scholar 

  29. Nyitrai, M., and M. A. Geeves. Adenosine diphosphate and strain sensitivity in myosin motors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1452):1867–1877, 2004.

    Article  PubMed  CAS  Google Scholar 

  30. Poley, R. N., C. R. Dosier, J. E. Speich, A. S. Miner, and P. H. Ratz. Stimulated calcium entry and constitutive RhoA kinase activity cause stretch-induced detrusor contraction. Eur. J. Pharmacol. 599:137–145, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Pratusevich, V. R., C. Y. Seow, and L. E. Ford. Plasticity in canine airway smooth muscle. J. Gen. Physiol. 105(1):73–94, 1995.

    Article  PubMed  CAS  Google Scholar 

  32. Ratz, P. H., and J. E. Speich. Evidence that actomyosin cross bridges contribute to “passive” tension in detrusor smooth muscle. Am. J. Physiol. Renal Physiol. 298(6):F1424–F1435, 2010.

    Article  PubMed  CAS  Google Scholar 

  33. Resnick, N. M., and S. V. Yalla. Detrusor hyperactivity with impaired contractile function. An unrecognized but common cause of incontinence in elderly patients. JAMA 257(22):3076–3081, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Ruegg, C., C. Veigel, J. E. Molloy, S. Schmitz, J. C. Sparrow, and R. H. Fink. Molecular motors: force and movement generated by single myosin II molecules. News Physiol. Sci. 17:213–218, 2002.

    PubMed  Google Scholar 

  35. Seow, C. Y. Response of arterial smooth muscle to length perturbation. J. Appl. Physiol. 89(5):2065–2072, 2000.

    PubMed  CAS  Google Scholar 

  36. Seow, C. Y., V. R. Pratusevich, and L. E. Ford. Series-to-parallel transition in the filament lattice of airway smooth muscle. J. Appl. Physiol. 89(3):869–876, 2000.

    PubMed  CAS  Google Scholar 

  37. Sherrington, C. S. Notes on the arrangement of some motor fibres in the lumbo-sacral plexus. J. Physiol. 13(6):621–772, 1892.

    PubMed  CAS  Google Scholar 

  38. Smolensky, A. V., and L. E. Ford. The extensive length-force relationship of porcine airway smooth muscle. J. Appl. Physiol. 102(5):1906–1911, 2007.

    Article  PubMed  Google Scholar 

  39. Speich, J. E., A. M. Almasri, H. Bhatia, A. P. Klausner, and P. H. Ratz. Adaptation of the length-active tension relationship in rabbit detrusor. Am. J. Physiol. Renal Physiol. 297(4):F1119–F1128, 2009.

    Article  PubMed  CAS  Google Scholar 

  40. Speich, J. E., L. Borgsmiller, C. Call, R. Mohr, and P. H. Ratz. ROK-induced cross-link formation stiffens passive muscle: reversible strain-induced stress softening in rabbit detrusor. Am. J. Physiol. Cell Physiol. 289(1):C12–C21, 2005.

    Article  PubMed  CAS  Google Scholar 

  41. Speich, J. E., C. Dosier, L. Borgsmiller, K. Quintero, H. P. Koo, and P. H. Ratz. Adjustable passive length-tension curve in rabbit detrusor smooth muscle. J. Appl. Physiol. 102(5):1746–1755, 2007.

    Article  PubMed  Google Scholar 

  42. Speich, J. E., K. Quintero, C. Dosier, L. Borgsmiller, H. P. Koo, and P. H. Ratz. A mechanical model for adjustable passive stiffness in rabbit detrusor. J. Appl. Physiol. 101(4):1189–1198, 2006.

    Article  PubMed  Google Scholar 

  43. Speich, J. E., J. B. Southern, S. Henderson, C. W. Wilson, A. P. Klausner, and P. H. Ratz. Adjustable passive stiffness in mouse bladder: regulated by Rho kinase and elevated following partial bladder outlet obstruction. Am. J. Physiol. Renal Physiol. 302(8):F967–F976, 2012.

    Article  PubMed  CAS  Google Scholar 

  44. Uvelius, B. Isometric and isotonic length-tension relations and variations in longitudinal smooth muscle from rabbit urinary bladder. Acta Physiol. Scand. 97(1):1–12, 1976.

    Article  PubMed  CAS  Google Scholar 

  45. Veigel, C., J. E. Molloy, S. Schmitz, and J. Kendrick-Jones. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat. Cell Biol. 5(11):980–986, 2003.

    Article  PubMed  CAS  Google Scholar 

  46. Whittaker, M., E. M. Wilson-Kubalek, J. E. Smith, L. Faust, R. A. Milligan, and H. L. Sweeney. A 35-A movement of smooth muscle myosin on ADP release. Nature 378(6558):748–751, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Wu, X., K. G. Morgan, C. J. Jones, R. M. Tribe, and M. J. Taggart. Myometrial mechanoadaptation during pregnancy: implications for smooth muscle plasticity and remodelling. J. Cell Mol. Med. 12(4):1360–1373, 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the expert technical assistance of Amy S. Miner. This study was supported by a grant from the Edwin Beer Research Program in Urology and Urology Related Fields from the New York Academy of Medicine (to J.E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Speich.

Additional information

Associate Editor Stefan Jockenhoevel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speich, J.E., Wilson, C.W., Almasri, A.M. et al. Carbachol-Induced Volume Adaptation in Mouse Bladder and Length Adaptation via Rhythmic Contraction in Rabbit Detrusor. Ann Biomed Eng 40, 2266–2276 (2012). https://doi.org/10.1007/s10439-012-0590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0590-8

Keywords

Navigation