Skip to main content
Log in

A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ariano, M. A., R. B. Armstrong, and V. R. Edgerton. Hindlimb muscle fiber populations of five mammals. J. Histochem. Cytochem. 21:51–55, 1973.

    Article  PubMed  CAS  Google Scholar 

  2. Askew, G. N., and R. L. Marsh. The effects of length trajectory on the mechanical power output of mouse skeletal muscles. J. Exp. Biol. 200:3119–3131, 1997.

    PubMed  CAS  Google Scholar 

  3. Askew, G. N., and R. L. Marsh. Optimal shortening velocity (V/V max) of skeletal muscle during cyclical contractions: length–force effects and velocity-dependent activation and deactivation. J. Exp. Biol. 201:1527–1540, 1998.

    PubMed  CAS  Google Scholar 

  4. Balnave, C. D., and D. G. Allen. The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle. J. Physiol. 492:705–713, 1996.

    PubMed  CAS  Google Scholar 

  5. Biewener, A. A., and M. A. Daley. Muscle force–length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors. J. Exp. Biol. 296:2941–2958, 2003.

    Google Scholar 

  6. Biewener, A. A., K. P. Dial, and G. E. Goslow. Pectoralis muscle force and power output during flight in the starling. J. Exp. Biol. 164:1–18, 1992.

    Article  Google Scholar 

  7. Böl, M., M. Sturmat, C. Weichert, and C. Kober. A new approach for the validation of skeletal muscle modelling using MRI data. Comput. Mech. 47:591–601, 2011.

    Article  Google Scholar 

  8. Bottinelli, R., and C. Reggiani. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73:195–262, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, I. E., E. J. Cheng, and G. E. Loeb. Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force–length and force–velocity relationships. J. Muscle Res. Cell Motil. 20:627–643, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Buchanan, T. S., D. G. Lloyd, K. Manal, and T. F. Besier. Neuromusculoskeletal modelling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20:367–395, 2004.

    PubMed  Google Scholar 

  11. Buller, A. J., C. J. Kean, and K. W. Ranatunga. Transformation of contraction speed in muscle following cross-reinnervation; dependence on muscle size. J. Muscle Res. Cell Motil. 8:504–516, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Burke, R. E., D. N. Levine, F. E. Zajac, P. Tsairis, and W. K. Engel. Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174:709–712, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Close, R. I. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. 173:74–95, 1964.

    PubMed  CAS  Google Scholar 

  14. Close, R. I. Force: velocity properties of mouse muscles. Nature 206:718–719, 1965.

    Article  PubMed  CAS  Google Scholar 

  15. Close, R. I. The relations between sarcomere length and characteristics of isometric twitch contractions of frog sartorius muscle. J. Physiol. 220:745–762, 1972.

    PubMed  CAS  Google Scholar 

  16. Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52:129–197, 1972.

    PubMed  CAS  Google Scholar 

  17. Close, R. I., and A. R. Luff. Dynamic properties of inferior rectus muscle of the rat. J. Physiol. 236:259–270, 1974.

    PubMed  CAS  Google Scholar 

  18. Edwards, R. H. T. Human muscle function and fatigue. In: Human Muscle Fatigue: Physiological Mechanisms, edited by R. Porter, and J. Whelan. London: Pitman Medical, 1981, pp. 1–18.

    Google Scholar 

  19. Epstein, M., and W. Herzog. Theoretical Models of Skeletal Muscle. New York: John Wiley & Sons, 238 pp., 1998.

  20. Farina, D., M. Fosci, and R. Merletti. Motor unit recruitment strategies investigated by surface EMG variables. J. Appl. Physiol. 92:235–247, 2002.

    Article  PubMed  Google Scholar 

  21. Fuglevand, A. J., D. A. Winter, and A. E. Patla. Models of recruitment and rate coding organization in motor-unit pools. J. Neurophysiol. 70:2470–2488, 1993.

    PubMed  CAS  Google Scholar 

  22. Gillespie, C. A., D. R. Simpson, and V. R. Edgerton. Motor unit recruitment as reflected by muscle fibre glycogen loss in a prosimian (bushbaby) after running and jumping. J. Neurol. Neurosurg. Psychiatry 37:817–824, 1974.

    Article  PubMed  CAS  Google Scholar 

  23. Gillis, G. B., and A. A. Biewener. Effects of surface grade on proximal hindlimb muscle strain and activation during rat locomotion. J. Appl. Physiol. 93:1731–1743, 2002.

    PubMed  Google Scholar 

  24. Gillis, G. B., J. P. Flynn, P. McGuigan, and A. A. Biewener. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion. J. Exp. Biol. 208:4599–4611, 2005.

    Article  PubMed  Google Scholar 

  25. Griffiths, R. I. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J. Physiol. 436:219–236, 1991.

    PubMed  CAS  Google Scholar 

  26. Henneman, E., H. P. Clamann, J. D. Gillies, and R. D. Skinner. Rank order of motorneurones within a pool, law of combination. J. Neurophysiol. 37:1338–1349, 1974.

    PubMed  CAS  Google Scholar 

  27. Hernandez, A., A. L. Lenz, and D. G. Thelen. Electrical stimulation of the rectus femoris during pre-swing diminishes hip and knee flexion during the swing phase of normal gait. IEEE Trans. Neural Syst. Rehabil. Eng. 18(5):523–530, 2010.

    Article  PubMed  Google Scholar 

  28. Hill, A. V. First and Last Experiments in Muscle Mechanics. Cambridge: Cambridge University Press, 1970.

    Google Scholar 

  29. Hodson-Tole, E., and J. M. Wakeling. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus). J. Exp. Biol. 210:2333–2345, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Hodson-Tole, E., and J. M. Wakeling. Motor unit recruitment patterns. 1. Responses to changes in locomotor velocity and incline. J. Exp. Biol. 211:1882–1892, 2008.

    Article  PubMed  Google Scholar 

  31. Hodson-Tole, E., and J. M. Wakeling. Motor unit recruitment patterns. 2. The influence of myoelectric intensity and muscle fascicle strain rate. J. Exp. Biol. 210(211):1893–1902, 2008.

    Article  Google Scholar 

  32. Hodson-Tole, E., and J. M. Wakeling. Motor unit recruitment for dynamic tasks: current understanding and future directions. J. Comp. Physiol. B 179:57–66, 2009.

    Article  PubMed  Google Scholar 

  33. Hodson-Tole, E., and J. M. Wakeling. The influence of strain and activation on the locomotor function of rat ankle extensor muscles. J. Exp. Biol. 213:318–330, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. Hoffer, J. A., M. J. O’Donovan, C. A. Pratt, and G. E. Loeb. Discharge patterns of hindlimb motoneurons during normal cat locomotion. Science 213:466–467, 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson, M. A., J. Polgar, D. Weightman, and D. Appleton. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 18:111–129, 1973.

    Article  PubMed  CAS  Google Scholar 

  36. Lee, S. S. M., M. de Boef Miara, A. Arnold-Rife, A. A. Biewener, and J. M. Wakeling. EMG analysis tuned for determining the timing and level of activation in different motor units. J. Electromyogr. Kinesiol. 21:557–565, 2011.

    Article  PubMed  Google Scholar 

  37. Loeb, G. E. Motoneurone task groups: coping with kinematic heterogeneity. J. Exp. Biol. 115:137–146, 1985.

    PubMed  CAS  Google Scholar 

  38. Luff, A. R. Dynamic properties of fast and slow skeletal muscles in the cat and rat following cross-reinnervation. J. Physiol. 248:83–96, 1975.

    PubMed  CAS  Google Scholar 

  39. Luff, A. R. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscles of the mouse. J. Physiol. 313:161–171, 1981.

    PubMed  CAS  Google Scholar 

  40. Maganaris, C. N., V. Baltzopoulos, and A. J. Sargeant. In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J. Physiol. 512:603–614, 1998.

    Article  PubMed  CAS  Google Scholar 

  41. McGuigan, M. P., E. Yoo, D. V. Lee, and A. A. Biewener. Dynamics of goat distal hind limb muscle–tendon function in response to locomotor grade. J. Exp. Biol. 212:2092–2104, 2009.

    Article  PubMed  Google Scholar 

  42. Otten, E. A myocybernetic model of the jaw system of the rat. J. Neurosci. Methods 21:287–302, 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Otten, E. Optimal design of vertebrate and insect sarcomeres. J. Morphol. 191:49–62, 1987.

    Article  PubMed  CAS  Google Scholar 

  44. Perreault, E. J., C. J. Heckman, and T. G. Sandercock. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. J. Biomech. 36:211–218, 2003.

    Article  PubMed  Google Scholar 

  45. Rack, P. M. H., and D. R. Westerbury. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J. Physiol. 204:443–460, 1969.

    PubMed  CAS  Google Scholar 

  46. Ranatunga, K. W. Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle. J. Physiol. 329:465–483, 1982.

    PubMed  CAS  Google Scholar 

  47. Rassier, D. E., W. Herzog, J. Wakeling, and D. A. Syme. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length. J. Biomech. 36:1309–1316, 2003.

    Article  PubMed  Google Scholar 

  48. Roberts, T. J., and A. M. Gabaldón. Interpreting muscle function from EMG: lessons learned from direct measurements of muscle force. Int. Comp. Biol. 48:312–320, 2008.

    Article  Google Scholar 

  49. Rome, L. C. Scaling of muscle fibres and locomotion. J. Exp. Biol. 168:243–252, 1992.

    PubMed  CAS  Google Scholar 

  50. Roszek, B., G. C. Baan, and P. A. Huijing. Decreasing stimulation frequency-dependent length–force characteristics of rat muscle. J. Appl. Physiol. 77:2115–2124, 1994.

    PubMed  CAS  Google Scholar 

  51. Solomonow, M. External control of the neuromuscular system. IEEE Trans. Biomed. Eng. 31:752–763, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Spector, S. A., P. F. Gardiner, R. F. Zernicke, R. R. Roy, and V. R. Edgerton. Muscle architecture and force–velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J. Neurophysiol. 44:951–960, 1980.

    PubMed  CAS  Google Scholar 

  53. Stephenson, D. G., and I. R. Wendt. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J. Muscle Res. Cell Motil. 5:243–272, 1984.

    Article  PubMed  CAS  Google Scholar 

  54. Tanner, J. A. Reversible blocking of nerve conduction by alternating-current excitation. Nature 195:712–713, 1962.

    Article  PubMed  CAS  Google Scholar 

  55. Toniolo, L., M. Patruno, L. Maccatrozzo, M. A. Pellegrino, M. Canepari, R. Rossi, G. D’Antona, R. Bottinelli, C. Reggiani, and F. Mascarello. Fast fibres in a large animal: fibre types, contractile properties and myosin expression in pig skeletal muscles. J. Exp. Biol. 207:1875–1886, 2004.

    Article  PubMed  CAS  Google Scholar 

  56. Umberger, B. R., K. G. M. Gerritsen, and P. E. Martin. A model of human muscle energy expenditure. Comput. Meth. Biomech. Miomed. Eng. 6:99–111, 2003.

    Article  Google Scholar 

  57. Van Leeuwen, J. L. Muscle function in locomotion. In: Mechanics of Animal Locomotion, edited by R. McN. Alexander. Berlin: Springer, 1992, pp. 191–250.

    Chapter  Google Scholar 

  58. Van Soest, A. J., and M. F. Bobbert. The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69:195–204, 1993.

    Article  PubMed  Google Scholar 

  59. Vandervoort, A. A., and A. J. McComas. A comparison of the contractile properties of the human gastrocnemius and soleus muscles. Eur. J. Appl. Physiol. 51:435–440, 1983.

    Article  CAS  Google Scholar 

  60. von Tscharner, V. Intensity analysis in time–frequency space of surface myoelectric signals by wavelets of specified resolution. J. Electromyogr. Kinesiol. 10:433–445, 2000.

    Article  Google Scholar 

  61. Wakeling, J. M. Motor units are recruited in a task dependent fashion during locomotion. J. Exp. Biol. 207:3883–3890, 2004.

    Article  PubMed  Google Scholar 

  62. Wakeling, J. M. Patterns of motor recruitment can be determined using surface EMG. J. Electromyogr. Kinesiol. 19:199–207, 2009.

    Article  PubMed  Google Scholar 

  63. Wakeling, J. M., O. M. Blake, I. Wong, M. Rana, and S. M. M. Lee. Movement mechanics as a determinate of muscle structure, recruitment and coordination. Philos. Trans. R. Soc. B 366:1554–1564, 2011.

    Article  Google Scholar 

  64. Wakeling, J. M., M. Kaya, G. K. Temple, I. A. Johnston, and W. Herzog. Determining patterns of motor recruitment during locomotion. J. Exp. Biol. 205:359–369, 2002.

    PubMed  Google Scholar 

  65. Wakeling, J. M., and D. A. Syme. Wave properties of action potentials from fast and slow motor units. Muscle Nerve 26:659–668, 2002.

    Article  PubMed  Google Scholar 

  66. Wakeling, J. M., K. Uehli, and A. I. Rozitis. Muscle fibre recruitment can respond to the mechanics of the muscle contraction. J. R. Soc. Interface 3:533–544, 2006.

    Article  PubMed  Google Scholar 

  67. Winters, J. M., and L. Stark. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J. Biomech. 21:1027–1041, 1988.

    Article  PubMed  CAS  Google Scholar 

  68. Winters, T. M., M. Takahashi, R. L. Lieber, and S. R. Ward. Whole muscle length–tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles. J. Biomech. 44:109–115, 2011.

    Article  PubMed  Google Scholar 

  69. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359–411, 1989.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Emma Hodson-Tole for her literature survey on the relation between v 0 and activation rates, Pedro Ramirez for animal care and assistance in training and Drs. Jennifer Carr and Carlos Moreno for assistance during data collection. This work was supported by the NIH (R01AR055648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Wakeling.

Additional information

Associate Editor Catherine Disselhorst-Klug oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakeling, J.M., Lee, S.S.M., Arnold, A.S. et al. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers. Ann Biomed Eng 40, 1708–1720 (2012). https://doi.org/10.1007/s10439-012-0531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0531-6

Keywords

Navigation