Skip to main content

Advertisement

Log in

Validation of FE Micromotions and Strains Around a Press-Fit Cup: Introducing a New Micromotion Measuring Technique

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Finite element (FE) analysis provides an useful tool with which to analyze the potential performance of implantations in a variety of surgical, patient and design scenarios. To enable the use of FE analysis in the investigation of such implants, models must be experimentally validated. Validation of a pelvic model with an implanted press-fit cup in terms of micromotion and strain is presented here. A new method of micromotion has been introduced to better describe the overall movement of the cup within the pelvis. The method uses a digitizing arm to monitor the relative movement between markers on the cup and the surrounding acetabulum. FE analysis was used to replicate an experimental set up using a synthetic hemi-pelvis with a press-fitted all-metal cup, subject to the maximum loading observed during normal walking. The work presented here has confirmed the ability of FE models to accurately describe the mechanical performance of the press-fitted acetabulum and surrounding bone under typical loading conditions in terms of micromotion and strain distribution, but has demonstrated limitations in its ability to predict numerical micromotion values. A promising digitizing technique for measuring acetabular micromotions has also been introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abdul-Kadir, M. R., U. Hansen, R. Klabunde, D. Lucas, and A. A. Amis. Finite element modelling of primary hip stem stability: the effect of interference fit. J. Biomech. 41:587–594, 2008.

    Article  PubMed  Google Scholar 

  2. Adler, E., S. A. Stuchin, and F. J. Kummer. Stability of press-fit acetabular cups. J. Arthroplasty 7:295–301, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, A., C. Peters, B. Tuttle, and J. Weiss. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J. Biomech. Eng. Trans. ASME 127:364–373, 2005.

    Article  Google Scholar 

  4. Baleani, M., R. Fognani, and A. Toni. Initial stability of a cementless acetabular cup design: experimental investigation on the effect of adding fins to the rim of the cup. Artif. Organs 25:664–669, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Bell, C. G., P. C. Weinrauch, R. W. Crawford, and M. J. Pearcy. Thermomechanical investigation of the cortical bone analogue in third-generation Sawbones femurs. Proc. Inst. Mech. Eng. H 221:213–217, 2007.

    PubMed  CAS  Google Scholar 

  6. Bergmann, G., G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, and G. N. Duda. Hip contact forces and gait patterns from routine activities. J. Biomech. 34:859–871, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Bragdon, C. R., D. Burke, J. D. Lowenstein, D. O. O’Connor, B. Ramamurti, M. Jasty, and W. H. Harris. Differences in stiffness of the interface between a cementless porous implant and cancellous bone in vivo in dogs due to varying amounts of implant motion. J. Arthroplasty 11:945–951, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Cristofolini, L., M. Viceconti, A. Cappello, and A. Tonib. Mechanical validation of whole bone composite femur models. J. Biomech. 29:525–535, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Curtis, M. J., R. H. Jinnah, V. D. Wilson, and D. S. Hungerford. The initial stability of uncemented acetabular components. J. Bone Joint Surg. Br. 74:372–376, 1992.

    PubMed  CAS  Google Scholar 

  10. Davies, J. Handbook of Materials for Medical Devices. Ohio: ASM International, 2003.

    Google Scholar 

  11. Heiner, A. D. Structural properties of fourth-generation composite femurs and tibias. J. Biomech. 41:3282–3284, 2008.

    Article  PubMed  Google Scholar 

  12. Hsu, J., K. Lai, Q. Chen, M. Zobitz, H. Huang, K. An, and C. Chang. The relation between micromotion and screw fixation in acetabular cup. Comput. Methods Programs Biomed. 84:34–41, 2006.

    Article  PubMed  Google Scholar 

  13. Kim, Y. S., T. D. Brown, D. R. Pedersen, and J. J. Callaghan. Reamed surface topography and component seating in press-fit cementless acetabular fixation. J. Arthroplasty 10:S14–S21, 1995.

    Article  PubMed  Google Scholar 

  14. Kluess, D., R. Souffrant, W. Mittelmeier, A. Wree, K.-P. Schmitz, and R. Bader. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput. Methods Programs Biomed. 95:23–30, 2009.

    Article  PubMed  Google Scholar 

  15. Kwong, L. M., D. O. O’Connor, R. C. Sedlacek, R. J. Krushell, W. J. Maloney, and W. H. Harris. A quantitative in vitro assessment of fit and screw fixation on the stability of a cementless hemispherical acetabular component. J. Arthroplasty 9:163–170, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Massin, P., E. Vandenbussche, B. Landjerit, and B. Augereau. Experimental study of periacetabular deformations before and after implantation of hip prostheses. J. Biomech. 29:53–61, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Murray, D. W. The definition and measurement of acetabular orientation. J. Bone Joint Surg. Br. 75-B:228–232, 1993.

    Google Scholar 

  18. NJR. National Joint Registry for England and Wales 7th Annual Report. Hemel Hempstead, UK: National Joint Registry, 2010.

  19. Perona, P. G., J. Lawrence, W. G. Paprosky, A. G. Patwardhan, and M. Sartori. Acetabular micromotion as a measure of initial implant stability in primary hip arthroplasty: an in vitro comparison of different methods of initial acetabular component fixation. J. Arthroplasty 7:537–547, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Pilliar, R., J. Lee, and D. Maniatopoulos. Observations on the effect of movement in bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 208:108–113, 1986.

    PubMed  Google Scholar 

  21. Reggiani, B., L. Cristofolini, E. Varini, and M. Viceconti. Predicting the subject-specific primary stability of cementless implants during pre-operative planning: preliminary validation of subject-specific finite-element models. J. Biomech. 40:2552–2558, 2007.

    Article  PubMed  CAS  Google Scholar 

  22. Rodrigues, J., H. Lopes, F. de Melo, and J. A. Simões. Experimental modal analysis of a synthetic composite femur. Exp. Mech. 44:29–32, 2004.

    Article  Google Scholar 

  23. Shirazi-Adl, A., M. Dammak, and G. Paiement. Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J. Biomed. Mater. Res. 27:167–175, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Spears, I. R., M. Pfleiderer, E. Schneider, E. Hille, G. Bergmann, and M. M. Morlock. Interfacial conditions between a press-fit acetabular cup and bone during daily activities: implications for achieving bone in-growth. J. Biomech. 33:1471–1477, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Viceconti, M., G. Brusi, A. Pancanti, and L. Cristofolini. Primary stability of an anatomical cementless hip stem: a statistical analysis. J. Biomech. 39:1169–1179, 2006.

    Article  PubMed  Google Scholar 

  26. Viceconti, M., R. Muccini, M. Bernakiewicz, M. Baleani, and L. Cristofolini. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. J. Biomech. 33:1611–1618, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Won, C. H., T. C. Hearn, and M. Tile. Micromotion of cementless hemispherical acetabular components. Does press-fit need adjunctive screw fixation? J. Bone Joint Surg. Br. 77-B:484–489, 1995.

    Google Scholar 

  28. Yew, A., Z. Jin, A. Donn, M. Morlock, and G. Isaac. Deformation of press-fitted metallic resurfacing cups. Part 2: finite element simulation. Proc. Inst. Mech. Eng. H 220:311–319, 2006.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, Q.-H., J.-Y. Wang, C. Lupton, P. Heaton-Adegbile, Z.-X. Guo, Q. Liu, and J. Tong. A subject-specific pelvic bone model and its application to cemented acetabular replacements. J. Biomech. 43:2722–2727, 2010.

    Article  PubMed  Google Scholar 

  30. Zivkovic, I., M. Gonzalez, and F. Amirouche. The effect of under-reaming on the cup/bone interface of a press fit hip replacement. J. Biomech. Eng. Trans. ASME 132:041008, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) and Finsbury Orthopaedics Ltd. for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Clarke.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, S.G., Phillips, A.T.M. & Bull, A.M.J. Validation of FE Micromotions and Strains Around a Press-Fit Cup: Introducing a New Micromotion Measuring Technique. Ann Biomed Eng 40, 1586–1596 (2012). https://doi.org/10.1007/s10439-012-0523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0523-6

Keywords

Navigation