Skip to main content

Advertisement

Log in

Protection from Glutamate-Induced Excitotoxicity by Memantine

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study investigates whether the uncompetitive N-methyl-d-aspartic acid receptor antagonist, memantine, is able to protect dissociated cortical neurons from glutamate-induced excitotoxicity (GIE). Treatment with glutamate resulted in a significant loss of synchronization of neuronal activity as well as a significant increase in the duration of synchronized bursting events (SBEs). By administering memantine at the same time as glutamate, we were able to completely prevent these changes to the neuronal activity. Pretreatment with memantine was somewhat effective in preventing changes to the culture synchronization but was unable to fully protect the synchronization of electrical activity between neurons that showed high levels of synchronization prior to injury. Additionally, memantine pretreatment was unable to prevent the increase in the duration of SBEs caused by GIE. Thus, the timing of memantine treatment is important for conferring neuroprotection against glutamate-induced neurotoxicity. Finally, we found that GIE leads to a significant increase in the burst duration. Our data suggest that this may be due to an alteration in the inhibitory function of the neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anitha, M., M. S. Nandhu, T. R. Anju, P. Jes, and C. S. Paulose. Targeting glutamate mediated excitotoxicity in Huntington’s disease: neural progenitors and partial glutamate antagonist—memantine. Med. Hypotheses 76:138–140, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Bordji, K., J. Becerril-Ortega, and A. Buisson. Synapses, NMDA receptor activity and neuronal Abeta production in Alzheimer’s disease. Rev. Neurosci. 22:285–294, 2011.

    Article  PubMed  Google Scholar 

  3. Caveness, W. F. Epilepsy, a product of trauma in our time. Epilepsia 17:207–215, 1976.

    Article  PubMed  CAS  Google Scholar 

  4. Cente, M., S. Mandakova, and P. Filipcik. Memantine prevents sensitivity to excitotoxic cell death of rat cortical neurons expressing human truncated tau protein. Cell. Mol. Neurobiol. 29:945–949, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, H. S., and S. A. Lipton. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. 499(Pt 1):27–46, 1997.

    PubMed  CAS  Google Scholar 

  6. Chen, H. S., and S. A. Lipton. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97:1611–1626, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, H. S., J. W. Pellegrini, S. K. Aggarwal, S. Z. Lei, S. Warach, F. E. Jensen, and S. A. Lipton. Open-channel block of N-methyl-d-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12:4427–4436, 1992.

    PubMed  CAS  Google Scholar 

  8. Chen, H. S., Y. F. Wang, P. V. Rayudu, P. Edgecomb, J. C. Neill, M. M. Segal, S. A. Lipton, and F. E. Jensen. Neuroprotective concentrations of the N-methyl-d-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86:1121–1132, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Chiappalone, M., A. Vato, L. Berdondini, M. Koudelka-Hep, and S. Martinoia. Network dynamics and synchronous activity in cultured cortical neurons. Int. J. Neural Syst. 17:87–103, 2007.

    Article  PubMed  Google Scholar 

  10. Chiappalone, M., A. Vato, M. B. Tedesco, M. Marcoli, F. Davide, and S. Martinoia. Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. Biosens. Bioelectron. 18:627–634, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Choi, D. W. Calcium: still center-stage in hypoxic–ischemic neuronal death. Trends Neurosci. 18:58–60, 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Choi, D. W., J. Y. Koh, and S. Peters. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8:185–196, 1988.

    PubMed  CAS  Google Scholar 

  13. Dingledine, R., K. Borges, D. Bowie, and S. F. Traynelis. The glutamate receptor ion channels. Pharmacol. Rev. 51:7–61, 1999.

    PubMed  CAS  Google Scholar 

  14. Du, Y., C. P. Chen, C. Y. Tseng, Y. Eisenberg, and B. L. Firestein. Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 55:463–472, 2007.

    Article  PubMed  Google Scholar 

  15. Gopal, K. V. Neurotoxic effects of mercury on auditory cortex networks growing on microelectrode arrays: a preliminary analysis. Neurotoxicol. Teratol. 25:69–76, 2003.

    Article  PubMed  CAS  Google Scholar 

  16. Hales, C. M., J. D. Rolston, and S. M. Potter. How to culture, record and stimulate neuronal networks on micro-electrode arrays (MEAs). J. Vis. Exp. (39):e2056, 2010. doi:10.3791/2056.

  17. Hardingham, G. E., Y. Fukunaga, and H. Bading. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5:405–414, 2002.

    PubMed  CAS  Google Scholar 

  18. Ikonomidou, C., and L. Turski. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1:383–386, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, J. W., and S. E. Kotermanski. Mechanism of action of memantine. Curr. Opin. Pharmacol. 6:61–67, 2006.

    Article  PubMed  CAS  Google Scholar 

  20. Kharlamov, E. A., E. Lepsveridze, M. Meparishvili, R. O. Solomonia, B. Lu, E. R. Miller, K. M. Kelly, and Z. Mtchedlishvili. Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res. 95:20–34, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Kuszczyk, M., M. Slomka, L. Antkiewicz-Michaluk, E. Salinska, and J. W. Lazarewicz. 1-Methyl-1,2,3,4-tetrahydroisoquinoline and established uncompetitive NMDA receptor antagonists induce tolerance to excitotoxicity. Pharmacol. Rep. 62:1041–1050, 2010.

    PubMed  CAS  Google Scholar 

  22. Kutzing, M. K., V. Luo, and B. L. Firestein. Measurement of synchronous activity by microelectrode arrays uncovers differential effects of sublethal and lethal glutamate concentrations on cortical neurons. Ann. Biomed. Eng. 39:2252–2262, 2011.

    Article  PubMed  Google Scholar 

  23. Leveille, F., F. El Gaamouch, E. Gouix, M. Lecocq, D. Lobner, O. Nicole, and A. Buisson. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J. 22:4258–4271, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Li, Y., W. Zhou, X. Li, S. Zeng, M. Liu, and Q. Luo. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays. Biosens. Bioelectron. 22:2976–2982, 2007.

    Article  PubMed  CAS  Google Scholar 

  25. Lin, C. H., S. H. Juan, C. Y. Wang, Y. Y. Sun, C. M. Chou, S. F. Chang, S. Y. Hu, W. S. Lee, and Y. H. Lee. Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J. Neurochem. 104:1415–1429, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Lipton, S. A. Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci. 16:527–532, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Lipton, S. A. NMDA receptors, glial cells, and clinical medicine. Neuron 50:9–11, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Lipton, S. A. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov. 5:160–170, 2006.

    Article  PubMed  CAS  Google Scholar 

  29. Lipton, S. A. Pathologically activated therapeutics for neuroprotection. Nat. Rev. Neurosci. 8:803–808, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Lipton, S. A., and P. A. Rosenberg. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Lowenstein, D. H. Epilepsy after head injury: an overview. Epilepsia 50(Suppl. 2):4–9, 2009.

    Article  PubMed  Google Scholar 

  32. Mayer, M. L., G. L. Westbrook, and P. B. Guthrie. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263, 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Morefield, S. I., E. W. Keefer, K. D. Chapman, and G. W. Gross. Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens. Bioelectron. 15:383–396, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Nowak, L., P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Okamoto, S., M. A. Pouladi, M. Talantova, D. Yao, P. Xia, D. E. Ehrnhoefer, R. Zaidi, A. Clemente, M. Kaul, R. K. Graham, D. Zhang, H. S. Vincent Chen, G. Tong, M. R. Hayden, and S. A. Lipton. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 15:1407–1413, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Papadia, S., F. X. Soriano, F. Leveille, M. A. Martel, K. A. Dakin, H. H. Hansen, A. Kaindl, M. Sifringer, J. Fowler, V. Stefovska, G. McKenzie, M. Craigon, R. Corriveau, P. Ghazal, K. Horsburgh, B. A. Yankner, D. J. Wyllie, C. Ikonomidou, and G. E. Hardingham. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci. 11:476–487, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Rao, V. L., A. Dogan, K. G. Todd, K. K. Bowen, and R. J. Dempsey. Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Res. 911:96–100, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Reisberg, B., R. Doody, A. Stoffler, F. Schmitt, S. Ferris, and H. J. Mobius. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348:1333–1341, 2003.

    Article  PubMed  CAS  Google Scholar 

  39. Rogawski, M. A. Therapeutic potential of excitatory amino acid antagonists: channel blockers and 2,3-benzodiazepines. Trends Pharmacol. Sci. 14:325–331, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Rogawski, M. A., and G. L. Wenk. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev. 9:275–308, 2003.

    Article  PubMed  CAS  Google Scholar 

  41. Sattler, R., M. P. Charlton, M. Hafner, and M. Tymianski. Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J. Neurochem. 71:2349–2364, 1998.

    Article  PubMed  CAS  Google Scholar 

  42. Shew, W. L., T. Bellay, and D. Plenz. Simultaneous multi-electrode array recording and two-photon calcium imaging of neural activity. J. Neurosci. Methods 192:75–82, 2010.

    Article  PubMed  CAS  Google Scholar 

  43. Sihver, S., N. Marklund, L. Hillered, B. Langstrom, Y. Watanabe, and M. Bergstrom. Changes in mACh, NMDA and GABA(A) receptor binding after lateral fluid-percussion injury: in vitro autoradiography of rat brain frozen sections. J. Neurochem. 78:417–423, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Tani, H., A. E. Bandrowski, I. Parada, M. Wynn, J. R. Huguenard, D. A. Prince, and R. J. Reimer. Modulation of epileptiform activity by glutamine and system A transport in a model of post-traumatic epilepsy. Neurobiol. Dis. 25:230–238, 2007.

    Article  PubMed  CAS  Google Scholar 

  45. Tariot, P. N., M. R. Farlow, G. T. Grossberg, S. M. Graham, S. McDonald, and I. Gergel. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317–324, 2004.

    Article  PubMed  CAS  Google Scholar 

  46. Wilkinson, D., and H. F. Andersen. Analysis of the effect of memantine in reducing the worsening of clinical symptoms in patients with moderate to severe Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 24:138–145, 2007.

    Article  PubMed  CAS  Google Scholar 

  47. Willmore, L. J., and D. H. Lowenstein. Epilepsy and trauma: a persistent challenge. Neurology 75:202–203, 2010.

    Article  PubMed  Google Scholar 

  48. Wrighton, D. C., E. J. Baker, P. E. Chen, and D. J. Wyllie. Mg2+ and memantine block of rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586:211–225, 2008.

    Article  PubMed  CAS  Google Scholar 

  49. Xia, P., H. S. Chen, D. Zhang, and S. A. Lipton. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 30:11246–11250, 2010.

    Article  PubMed  CAS  Google Scholar 

  50. Ye, Z. C., and H. Sontheimer. Astrocytes protect neurons from neurotoxic injury by serum glutamate. Glia 22:237–248, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Zeevalk, G. D., and W. J. Nicklas. Evidence that the loss of the voltage-dependent Mg2+ block at the N-methyl-d-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J. Neurochem. 59:1211–1220, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the New Jersey Commission on Brain Injury Research, #09-3209-BIR-E-2 to BLF. MLK was supported by Biotechnology Fellowship, Grant 5T32GM008339 from National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie L. Firestein.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzing, M.K., Luo, V. & Firestein, B.L. Protection from Glutamate-Induced Excitotoxicity by Memantine. Ann Biomed Eng 40, 1170–1181 (2012). https://doi.org/10.1007/s10439-011-0494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0494-z

Keywords

Navigation