Skip to main content
Log in

Kinematic Modeling-based Left Ventricular Diastatic (Passive) Chamber Stiffness Determination with In-Vivo Validation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The slope of the diastatic pressure–volume relationship (D-PVR) defines passive left ventricular (LV) stiffness \( \mathcal{K}.\) Although \( \mathcal{K} \) is a relative measure, cardiac catheterization, which is an absolute measurement method, is used to obtain the former. Echocardiography, including transmitral flow velocity (Doppler E-wave) analysis, is the preferred quantitative diastolic function (DF) assessment method. However, E-wave analysis can provide only relative, rather than absolute pressure information. We hypothesized that physiologic mechanism-based modeling of E-waves allows derivation of the D-PVRE-wave whose slope, \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \), provides E-wave-derived diastatic, passive chamber stiffness. Our kinematic model of filling and Bernoulli’s equation were used to derive expressions for diastatic pressure and volume on a beat-by-beat basis, thereby generating D-PVRE-wave, and \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \). For validation, simultaneous (conductance catheter) PV and echocardiographic E-wave data from 30 subjects (444 total cardiac cycles) having normal LV ejection fraction (LVEF) were analyzed. For each subject (15 beats average) model-predicted \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \) was compared to experimentally measured \( \mathcal{K}_{\text{CATH}} \) via linear regression yielding as follows: \( \mathcal{K}_{{\text{E-}}{\text{wave}}} = \alpha {\mathcal{K}}_{\text{CATH}} + b\;(R^{2} = 0.92), \) where, α = 0.995 and b = 0.02. We conclude that echocardiographically determined diastatic passive chamber stiffness, \( \mathcal{K}_{{\text{E-}}{\text{wave}}} \), provides an excellent estimate of simultaneous, gold standard (PV)-defined diastatic stiffness, \( \mathcal{K}_{\text{CATH}} \). Hence, in chambers at diastasis, passive LV stiffness can be accurately determined by means of suitable analysis of Doppler E-waves (transmitral flow).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Appleton, C. P., L. K. Hatle, and R. L. Popp. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J. Am. Coll. Cardiol. 12:426–440, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Bauman, L., C. S. Chung, M. Karamanoglu, and S. J. Kovács. The peak atrioventricular pressure gradient to transmitral flow relation: kinematic model prediction with in vivo validation. J. Am. Soc. Echocardiogr. 17:839–844, 2004.

    Article  PubMed  Google Scholar 

  3. Bland, J. M., and D. G. Altman. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310, 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Chung, C. S., D. M. Ajo, and S. J. Kovács. Isovolumic pressure-to-early rapid filling decay rate relation: model-based derivation and validation via simultaneous catheterization echocardiography. J. Appl. Physiol. 100:528–534, 2006.

    Article  PubMed  Google Scholar 

  5. Chung, C. S., M. Karamanoglu, and S. J. Kovács. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am. J. Physiol. Heart Circ. Physiol. 287:H2003–H2008, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Chung, C. S., and S. J. Kovács. Physical determination of left ventricular isovolumic pressure decline: model prediction with in vivo validation. Am. J. Physiol. 294:H1589–H1596, 2008.

    CAS  Google Scholar 

  7. Chung, C. S., A. Strunc, R. Oliver, and S. J. Kovács. Diastolic ventricular-vascular stiffness and relaxation relation: elucidation of coupling via pressure phase plane-derived indexes. Am. J. Physiol. Heart Circ. Physiol. 291:H2415–H2423, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Courtois, M., S. J. Kovács, and P. A. Ludbrook. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78:661–671, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Dent, C. L., A. W. Bowman, M. J. Scott, J. S. Allen, J. B. Lisauskas, M. Janif, S. A. Wickline, and S. J. Kovács. Echocardiographic characterization of fundamental mechanisms of abnormal diastolic filling in diabetic rats with a parametrized diastolic filling formalism. J. Am. Soc. Echocardiogr. 14:1166–1172, 2001.

    Article  PubMed  CAS  Google Scholar 

  10. Dumont, C. A., L. Monserrat, J. Peteiro, R. Soler, E. Rodriguez, A. Bouzas, X. Fernández, R. Pérez, B. Bouzas, and A. Castro-Beiras. Relation of left ventricular chamber stiffness at rest to exercise capacity in hypertrophic cardiomyopathy. Am. J. Cardiol. 99:1454–1457, 2007.

    Article  PubMed  Google Scholar 

  11. Falsetti, H. L., M. S. Verani, C. J. Chen, and J. A. Cramer. Regional pressure differences in the left ventricle. Catheter Cardiovasc. Diag. 6:123–134, 1980.

    Article  CAS  Google Scholar 

  12. Firstenberg, M. S., P. M. Vandervoort, N. L. Greenberg, N. G. Smedira, P. M. McCarthy, M. J. Garcia, and J. D. Thomas. Noninvasive estimation of transmitral pressure drop across the normal mitral valve in humans: importance of convective and inertial forces during left ventricular filling. J. Am. Coll. Cardiol. 36:1942–1949, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. Garcia, M. J., J. D. Thomas, and A. L. Klein. New Doppler echocardiographic applications for the study of diastolic dysfunction. J. Am. Coll. Cardiol. 32:865–875, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Hall, A. F., and S. J. Kovács. Processing parameter effects on the robustness of the solution to the “Inverse Problem” of diastole from Doppler echocardiographic data. In: 15th Annual International Conference, IEEE Engineering in Medicine & Biology Society, 1993, pp. I385–I387.

  15. Hall, A. F., and S. J. Kovács. Automated method for characterization of diastolic transmitral Doppler velocity contours: early rapid filling. Ultrasound Med. Biol. 20:107–116, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Haney, S., D. Sur, and Z. Xu. Diastolic heart failure: a review and primary care perspective. J. Am. Board Fam. Pract. 18:189–198, 2005.

    Article  PubMed  Google Scholar 

  17. Kass, D. A. Assessment of diastolic dysfunction: invasive modalities. Cardiol. Clin. 18:571–586, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Kass, D. A., J. G. F. Bronzwaer, and W. J. Paulus. What mechanism underline diastolic dysfunction in heart failure? Circ. Res. 94:1533–1542, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Khouri, S. J., G. T. Maly, D. D. Suh, and T. E. Walsh. A practical approach to the echocardiographic evaluation of diastolic function. J. Am. Soc. Echocardiogr. 17:290–297, 2004.

    Article  PubMed  Google Scholar 

  20. Kovács, S. J., B. Barzilai, and J. E. Pérez. Evaluation of diastolic function with Doppler echocardiography: the PDF formalism. Am. J. Physiol. 87:H178–H187, 1987.

    Google Scholar 

  21. Kovács, S. J., M. D. McQueen, and C. S. Peskin. Modelling cardiac fluid dynamics and diastolic function. Philos. Trans. R. Soc. A 359:1299–1314, 2001.

    Article  Google Scholar 

  22. Kovács, S. J., J. S. Meisner, and E. L. Yellin. Modeling of diastole. Cardiol. Clin. 18:459–487, 2000.

    Article  PubMed  Google Scholar 

  23. Kovács, S. J., R. Sester, and A. F. Hall. Left ventricular chamber stiffness from model-based image processing of transmitral Doppler E-waves. Coron. Artery Dis. 8:179–187, 1997.

    Article  PubMed  Google Scholar 

  24. Lisauskas, J. B., J. Singh, A. W. Bowman, and S. J. Kovács. Chamber properties from transmitral flow: prediction of average and passive left ventricular diastolic stiffness. J. Appl. Physiol. 91:154–162, 2001.

    PubMed  CAS  Google Scholar 

  25. Lisauskas, J. B., J. Singh, M. Courtois, and S. J. Kovács. The relation of the peak Doppler E-wave to peak mitral annulus velocity ratio to diastolic function. Ultrasound Med. Biol. 27:499–507, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Little, W. C., M. Ohno, D. W. Kitzman, J. D. Thomas, and C. P. Cheng. Determination of left ventricular chamber stiffness from the time for deceleration of early left ventricular filling. Circulation 92:1933–1939, 1995.

    PubMed  CAS  Google Scholar 

  27. Maeder, M. T., and D. M. Kaye. Heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 53:905–918, 2009.

    Article  PubMed  Google Scholar 

  28. Mossahebi, S., L. Shmuylovich, and S. J. Kovács. The thermodynamics of diastole: kinematic modeling based derivation of the P–V loop to transmitral flow energy relation, with in-vivo validation. Am. J. Physiol. Heart Circ. Physiol. 300:H514–H521, 2011.

    Article  PubMed  CAS  Google Scholar 

  29. Nagueh, S. F., C. P. Appleton, T. C. Gillebert, P. N. Marino, J. K. Oh, O. A. Smiseth, A. D. Waggoner, F. A. Flachskampf, P. A. Pellikka, and A. Evangelista. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22(2):107–133, 2009.

    Article  PubMed  Google Scholar 

  30. Nishimura, R. A., and A. J. Tajik. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J. Am. Coll. Cardiol. 30:8–18, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Oki, T., T. Tabata, Y. Mishiro, H. Yamada, M. Abe, Y. Onose, T. Wakatsuki, A. Iuchi, and S. Ito. Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in healthy subjects. J. Am. Soc. Echocardiogr. 12:308–313, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Omens, J., and Y. Fung. Residual strain in rat left ventricle. Circ. Res. 66:37–45, 1990.

    PubMed  CAS  Google Scholar 

  33. Riordan, M. M., C. S. Chung, and S. J. Kovács. Diabetes and diastolic function: stiffness and relaxation from transmitral flow. Ultrasound Med. Biol. 31:1589–1596, 2005.

    Article  PubMed  Google Scholar 

  34. Shmuylovich, L., and S. J. Kovács. E-wave deceleration time may not provide accurate determination of left ventricular chamber stiffness if left ventricular relaxation/viscoelasticity is unknown. Am. J. Physiol. Heart Circ. Physiol. 292:H2712–H2720, 2007.

    Article  PubMed  CAS  Google Scholar 

  35. Støylen, A., S. Slordahl, G. K. Skjelvan, A. Heimdal, and T. Skjaerpe. Strain rate imaging in normal and reduced diastolic function: comparison with pulsed Doppler tissue imaging of the mitral annulus. J. Am. Soc. Echocardiogr. 14:264–274, 2001.

    Article  PubMed  Google Scholar 

  36. Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.

    PubMed  CAS  Google Scholar 

  37. Thomas, J. D., J. B. Newell, C. Y. Choong, and A. E. Weyman. Physical and physiological determinants of transmitral velocity: numerical analysis. Am. J. Physiol. 260:H1718–H1731, 1991.

    PubMed  CAS  Google Scholar 

  38. Yellin, E. L. Mitral valve motion, intracardiac dynamics and flow pattern modelling: physiology and pathophysiology. In: Advances in Cardiovascular Physics, edited by D. N. Ghista. Basel: Karger, 1983, pp. 137–161.

    Google Scholar 

  39. Zhang, W., C. S. Chung, L. Shmuylovich, and S. J. Kovács. Viewpoint: is left ventricular volume during diastasis the real equilibrium volume and, what is its relationship to diastolic suction? J. Appl. Physiol. 105:1012–1014, 2008.

    Article  PubMed  Google Scholar 

  40. Zhang, W., and S. J. Kovács. The diastatic pressure–volume relationship is not the same as the end-diastolic pressure-volume relationship. Am. J. Physiol. Heart Circ. Physiol. 294(6):H2750–H2760, 2008.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang, W., L. Shmuylovich, and S. J. Kovács. The E-wave delayed relaxation pattern to LV pressure contour relation: model-based prediction with in-vivo validation. Ultrasound Med. Biol. 36:497–511, 2010.

    Article  PubMed  Google Scholar 

  42. Zile, M. R., and D. L. Brutsaert. New concepts in diastolic dysfunction and diastolic heart failure: part I. Circulation. 105:1387–1393, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Alan A. and Edith L. Wolff Charitable Trust, St. Louis, and the Barnes-Jewish Hospital Foundation, St. Louis. The authors thank sonographer Peggy Brown for expert echocardiographic data acquisition, and the staff of the BJH Cardiovascular Procedure Center’s Cardiac Catheterization Laboratory for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor J. Kovács.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Appendix 1

Appendix 1

Simultaneous Acquisition of Echocardiographic and High Fidelity Hemodynamic Data

Before arterial access, in the catheterization laboratory, a full 2-D echo-Doppler study is performed by an ASE-certified sonographer in accordance with ASE criteria.29 After appropriate sterile skin prep and drape, local anesthesia (1% xylocaine) is given and percutaneous right or left femoral arterial access is obtained in preparation for catheterization and angiography, using a valved sheath (6-F, Arrow Inc, Reading, PA). After arterial access and placement of a 64-cm sheath (Arrow Inc, Reading, PA), a 6F micromanometer-tipped pigtail (triple pressure transducer) pressure–volume, conductance catheter (Model 560-1, 560-5, Millar Instruments, Houston, TX) is directed into the mid-LV in a retrograde fashion across the aortic valve under fluoroscopic guidance. Before insertion, the manometer-tipped catheter is calibrated against “zero” by submersion just below the surface of NS bath at 37 °C, and again after insertion relative to hydrostatic “zero” using the lumen with respect to the mid-thoracic fluid-filled transducer (HP). It is balanced using a transducer control unit (Model TC-510, Millar Instruments, Houston, TX), and pressures are fed to the catheterization laboratory amplifier (Quinton Diagnostics, Bothell, WA or GE Healthcare, Milwaukee, WI) and simultaneously into the input ports of the physiological amplifier of the Doppler imaging system for synchronization (Philips iE33). With the patient supine, apical 4-chamber views using a 2.5-MHz transducer are obtained by the sonographer, with the sample volume gated at 1.5–5 mm directed between the tips of the mitral valve leaflets and orthogonal to the MV plane. Continuous wave Doppler is used to record aortic outflow and mitral inflow from the apical view for determination of the lateral IVRT using a sweep speed of 10 cm/s. Doppler tissue imaging (DTI) of the medial and the lateral mitral annulus, and M-mode images are also recorded. To synchronize the hemodynamic data with the Doppler data a fiducial marker in the form of a square wave is fed from the catheter–transducer control unit. The LV and AO pressures, and LV volumes from the conductance catheter and one ECG channel are also simultaneously recorded on disk. Simultaneous Doppler data, LVP and conductance volume are obtained for a minimum of 30 consecutive beats during quiet respiration. After data acquisition, the diagnostic catheterization procedure is performed in the usual manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mossahebi, S., Kovács, S.J. Kinematic Modeling-based Left Ventricular Diastatic (Passive) Chamber Stiffness Determination with In-Vivo Validation. Ann Biomed Eng 40, 987–995 (2012). https://doi.org/10.1007/s10439-011-0458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0458-3

Keywords

Navigation