Skip to main content
Log in

Organs-on-a-Chip: A Focus on Compartmentalized Microdevices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Advances in microengineering technologies have enabled a variety of insights into biomedical sciences that would not have been possible with conventional techniques. Engineering microenvironments that simulate in vivo organ systems may provide critical insight into the cellular basis for pathophysiologies, development, and homeostasis in various organs, while curtailing the high experimental costs and complexities associated with in vivo studies. In this article, we aim to survey recent attempts to extend tissue-engineered platforms toward simulating organ structure and function, and discuss the various approaches and technologies utilized in these systems. We specifically focus on microtechnologies that exploit phenomena associated with compartmentalization to create model culture systems that better represent the in vivo organ microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Agastin, S., U. B. Giang, Y. Geng, L. A. Delouise, and M. R. King. Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics 5(2):24110, 2011.

    Article  PubMed  CAS  Google Scholar 

  2. Albrecht, D. R., G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia. Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3(5):369–375, 2006.

    Article  PubMed  CAS  Google Scholar 

  3. Andersson, H., and A. van den Berg. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4(2):98–103, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Berdichevsky, Y., K. J. Staley, and M. L. Yarmush. Building and manipulating neural pathways with microfluidics. Lab Chip 10(8):999–1004, 2010.

    Article  PubMed  CAS  Google Scholar 

  5. Bhowmick, N. A., E. G. Neilson, and H. L. Moses. Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Bilek, A. M., K. C. Dee, and D. P. Gaver, 3rd. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94(2):770–783, 2003.

    PubMed  Google Scholar 

  7. Carraro, A., W. M. Hsu, K. M. Kulig, W. S. Cheung, M. L. Miller, E. J. Weinberg, E. F. Swart, M. Kaazempur-Mofrad, J. T. Borenstein, J. P. Vacanti, and C. Neville. In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 10(6):795–805, 2008.

    Article  PubMed  Google Scholar 

  8. Cherif, A. H., D. M. Jedlicka, A. Al-Arabi, R. Aron, and S. Verma. Effective understanding of the human body organs: a role-playing activity for deep learning. Am. Biol. Teach. 72(7):447–450, 2010.

    Article  Google Scholar 

  9. Chisari, F. V., N. Fausto, D. Schachter, D. A. Shafritz, I. M. Arias, and J. L. Boyer. The Liver: Biology and Pathobiology (4th ed.). Philadelphia: Lippincott Williams & Wilkins, 2001.

    Google Scholar 

  10. Cho, C. H., J. Park, A. W. Tilles, F. Berthiaume, M. Toner, and M. L. Yarmush. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. Biotechniques 48(1):47–52, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Choudhury, D., X. Mo, C. Iliescu, L. L. Tan, W. H. Tong, and H. Yu. Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics. Biomicrofluidics 5(2):22203, 2011.

    Article  PubMed  CAS  Google Scholar 

  12. Chung, S., R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275, 2009.

    Article  PubMed  CAS  Google Scholar 

  13. Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Cullen, D. K., J. Vukasinovic, A. Glezer, and M. C. Laplaca. Microfluidic engineered high cell density three-dimensional neural cultures. J. Neural Eng. 4(2):159–172, 2007.

    Article  PubMed  Google Scholar 

  15. Domansky, K., W. Inman, J. Serdy, A. Dash, M. H. Lim, and L. G. Griffith. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58, 2010.

    Article  PubMed  CAS  Google Scholar 

  16. Douville, N. J., P. Zamankhan, Y. C. Tung, R. Li, B. L. Vaughan, C. F. Tai, J. White, P. J. Christensen, J. B. Grotberg, and S. Takayama. Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab Chip 11(4):609–619, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Esch, M. B., T. L. King, and M. L. Shuler. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13:55–72, 2011.

    Article  PubMed  CAS  Google Scholar 

  18. Fritsche, C. S., O. Simsch, E. J. Weinberg, B. Orrick, C. Stamm, M. R. Kaazempur-Mofrad, J. T. Borenstein, R. Hetzer, and J. P. Vacanti. Pulmonary tissue engineering using dual-compartment polymer scaffolds with integrated vascular tree. Int. J. Artif. Organs 32(10):701–710, 2009.

    PubMed  CAS  Google Scholar 

  19. Fujioka, H., S. Takayama, and J. B. Grotberg. Unsteady propagation of a liquid plug in a liquid-lined straight tube. Phys Fluids (1994) 20(6):62104, 2008.

    Article  CAS  Google Scholar 

  20. Gao, Y., D. Majumdar, B. Jovanovic, C. Shaifer, P. C. Lin, A. Zijlstra, D. J. Webb, and D. Li. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomed. Microdevices 13(3):539–548, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Gomez-Sjoberg, R., A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79(22):8557–8563, 2007.

    Article  PubMed  CAS  Google Scholar 

  22. Goral, V. N., Y. C. Hsieh, O. N. Petzold, J. S. Clark, P. K. Yuen, and R. A. Faris. Perfusion-based microfluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab Chip 10(24):3380–3386, 2010.

    Article  PubMed  CAS  Google Scholar 

  23. Grover, W. H., A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies. Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors Actuators B 89(3):315–323, 2003.

    Article  CAS  Google Scholar 

  24. Gunther, A., S. Yasotharan, A. Vagaon, C. Lochovsky, S. Pinto, J. Yang, C. Lau, J. Voigtlaender-Bolz, and S. S. Bolz. A microfluidic platform for probing small artery structure and function. Lab Chip 10(18):2341–2349, 2010.

    Article  PubMed  CAS  Google Scholar 

  25. Hardelauf, H., J. P. Frimat, J. D. Stewart, W. Schormann, Y. Y. Chiang, P. Lampen, J. Franzke, J. G. Hengstler, C. Cadenas, L. A. Kunz-Schughart, and J. West. Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. Lab Chip 11(3):419–428, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Hardelauf, H., J. Sisnaiske, A. A. Taghipour-Anvari, P. Jacob, E. Drabiniok, U. Marggraf, J. P. Frimat, J. G. Hengstler, A. Neyer, C. van Thriel, and J. West. High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes. Lab Chip 11(16):2763–2771, 2011.

    Article  PubMed  CAS  Google Scholar 

  27. He, M., and A. E. Herr. Automated microfluidic protein immunoblotting. Nat. Protoc. 5(11):1844–1856, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Hirschhaeuser, F., H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148(1):3–15, 2010.

    Article  PubMed  CAS  Google Scholar 

  29. Hsiao, A. Y., Y. S. Torisawa, Y. C. Tung, S. Sud, R. S. Taichman, K. J. Pienta, and S. Takayama. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16):3020–3027, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Hsu, W. M., A. Carraro, K. M. Kulig, M. L. Miller, M. Kaazempur-Mofrad, E. Weinberg, F. Entabi, H. Albadawi, M. T. Watkins, J. T. Borenstein, J. P. Vacanti, and C. Neville. Liver-assist device with a microfluidics-based vascular bed in an animal model. Ann. Surg. 252(2):351–357, 2010.

    Article  PubMed  Google Scholar 

  31. Hsu, T. H., J. L. Xiao, Y. W. Tsao, Y. L. Kao, S. H. Huang, W. Y. Liao, and C. H. Lee. Analysis of the paracrine loop between cancer cells and fibroblasts using a microfluidic chip. Lab Chip 11(10):1808–1814, 2011.

    Article  PubMed  CAS  Google Scholar 

  32. Huang, C. P., J. Lu, H. Seon, A. P. Lee, L. A. Flanagan, H. Y. Kim, A. J. Putnam, and N. L. Jeon. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9(12):1740–1748, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Huh, D., H. Fujioka, Y. C. Tung, N. Futai, R. Paine, 3rd, J. B. Grotberg, and S. Takayama. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104(48):18886–18891, 2007.

    Article  PubMed  CAS  Google Scholar 

  34. Huh, D., B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668, 2010.

    Article  PubMed  CAS  Google Scholar 

  35. Hwa, A. J., R. C. Fry, A. Sivaraman, P. T. So, L. D. Samson, D. B. Stolz, and L. G. Griffith. Rat liver sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures with hepatocytes. FASEB J. 21(10):2564–2579, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Jang, K. J., and K. Y. Suh. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42, 2010.

    Article  PubMed  CAS  Google Scholar 

  37. Kane, B. J., M. J. Zinner, M. L. Yarmush, and M. Toner. Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78(13):4291–4298, 2006.

    Article  PubMed  CAS  Google Scholar 

  38. Khetani, S. R., and S. N. Bhatia. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26(1):120–126, 2008.

    Article  PubMed  CAS  Google Scholar 

  39. Kim, D. H., E. A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K. Y. Suh, L. Tung, and A. Levchenko. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl Acad. Sci. USA 107(2):565–570, 2010.

    Article  PubMed  CAS  Google Scholar 

  40. Kimura, H., T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746, 2008.

    Article  PubMed  CAS  Google Scholar 

  41. Kunze, A., M. Giugliano, A. Valero, and P. Renaud. Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32(8):2088–2098, 2011.

    Article  PubMed  CAS  Google Scholar 

  42. Lecault, V., M. Vaninsberghe, S. Sekulovic, D. J. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8(7):581–586, 2011.

    Article  PubMed  CAS  Google Scholar 

  43. Leclerc, E., R. Baudoin, A. Corlu, L. Griscom, J. Luc Duval, and C. Legallais. Selective control of liver and kidney cells migration during organotypic cocultures inside fibronectin-coated rectangular silicone microchannels. Biomaterials 28(10):1820–1829, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Leclerc, E., B. David, L. Griscom, B. Lepioufle, T. Fujii, P. Layrolle, and C. Legallaisa. Study of osteoblastic cells in a microfluidic environment. Biomaterials 27(4):586–595, 2006.

    Article  PubMed  CAS  Google Scholar 

  45. Lecuit, T., and L. Le Goff. Orchestrating size and shape during morphogenesis. Nature 450(7167):189–192, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. Lee, P. J., P. J. Hung, and L. P. Lee. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97(5):1340–1346, 2007.

    Article  PubMed  CAS  Google Scholar 

  47. Li, A. P. In vitro evaluation of human xenobiotic toxicity: scientific concepts and the novel integrated discrete multiple cell co-culture (IdMOC) technology. ALTEX 25(1):43–49, 2008.

    PubMed  CAS  Google Scholar 

  48. Li, A. P. The use of the Integrated Discrete Multiple Organ Co-culture (IdMOC) system for the evaluation of multiple organ toxicity. Altern. Lab Anim. 37(4):377–385, 2009.

    PubMed  CAS  Google Scholar 

  49. Li, A. P., C. Bode, and Y. Sakai. A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem. Biol. Interact. 150(1):129–136, 2004.

    Article  PubMed  CAS  Google Scholar 

  50. Liu, T., B. Lin, and J. Qin. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip 10(13):1671–1677, 2010.

    Article  PubMed  CAS  Google Scholar 

  51. Lovchik, R. D., F. Bianco, N. Tonna, A. Ruiz, M. Matteoli, and E. Delamarche. Overflow microfluidic networks for open and closed cell cultures on chip. Anal. Chem. 82(9):3936–3942, 2010.

    Article  PubMed  CAS  Google Scholar 

  52. Ma, H., T. Liu, J. Qin, and B. Lin. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis 31(10):1599–1605, 2010.

    Article  PubMed  CAS  Google Scholar 

  53. Mack, P. J., Y. Zhang, S. Chung, V. Vickerman, R. D. Kamm, and G. Garcia-Cardena. Biomechanical Regulation of Endothelium-dependent Events Critical for Adaptive Remodeling. J. Biol. Chem. 284(13):8412–8420, 2009.

    Article  PubMed  CAS  Google Scholar 

  54. Moraes, C., J. H. Chen, Y. Sun, and C. A. Simmons. Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation. Lab Chip 10(2):227–234, 2010.

    Article  PubMed  CAS  Google Scholar 

  55. Moraes, C., Y. Sun, and C. A. Simmons. (Micro)managing the mechanical microenvironment. Integr. Biol. (Camb) 3(10):959–971, 2011.

    Article  Google Scholar 

  56. Moraes, C., G. Wang, Y. Sun, and C. A. Simmons. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials 31(3):577–584, 2010.

    Article  PubMed  CAS  Google Scholar 

  57. Nalayanda, D. D., C. Puleo, W. B. Fulton, L. M. Sharpe, T. H. Wang, and F. Abdullah. An open-access microfluidic model for lung-specific functional studies at an air–liquid interface. Biomed. Microdevices 11(5):1081–1089, 2009.

    Article  CAS  Google Scholar 

  58. Nilsson, J., M. Evander, B. Hammarstrom, and T. Laurell. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649(2):141–157, 2009.

    Article  PubMed  CAS  Google Scholar 

  59. Ohashi, K., T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, and Y. Nakajima. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat. Med. 13(7):880–885, 2007.

    Article  PubMed  CAS  Google Scholar 

  60. Ottesen, E. A., J. W. Hong, S. R. Quake, and J. R. Leadbetter. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467, 2006.

    Article  PubMed  CAS  Google Scholar 

  61. Paguirigan, A. L., J. P. Puccinelli, X. Su, and D. J. Beebe. Expanding the available assays: adapting and validating in-cell westerns in microfluidic devices for cell-based assays. Assay Drug Dev. Technol. 8(5):591–601, 2010.

    Article  PubMed  CAS  Google Scholar 

  62. Pan, W., W. Chen, and X. Jiang. Microfluidic Western blot. Anal. Chem. 82(10):3974–3976, 2010.

    Article  PubMed  CAS  Google Scholar 

  63. Park, J., H. Koito, J. Li, and A. Han. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11(6):1145–1153, 2009.

    Article  PubMed  CAS  Google Scholar 

  64. Park, J., Y. Li, F. Berthiaume, M. Toner, M. L. Yarmush, and A. W. Tilles. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol. Bioeng. 99(2):455–467, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Park, J. Y., S. Takayama, and S. H. Lee. Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems. Integr. Biol. (Camb) 2(5–6):229–240, 2010.

    Article  CAS  Google Scholar 

  66. Pelosi, P. The forgotten sides of acute lung injury and acute respiratory distress syndrome. Curr. Opin. Crit. Care 14(1):1–2, 2008.

    Article  PubMed  Google Scholar 

  67. Price, G. M., K. H. Wong, J. G. Truslow, A. D. Leung, C. Acharya, and J. Tien. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31(24):6182–6189, 2010.

    Article  PubMed  CAS  Google Scholar 

  68. Rhee, S. W., A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon. Patterned cell culture inside microfluidic devices. Lab Chip 5(1):102–107, 2005.

    Article  PubMed  CAS  Google Scholar 

  69. Sekiya, S., M. Muraoka, T. Sasagawa, T. Shimizu, M. Yamato, and T. Okano. Three-dimensional cell-dense constructs containing endothelial cell-networks are an effective tool for in vivo and in vitro vascular biology research. Microvasc. Res. 80(3):549–551, 2010.

    Article  PubMed  Google Scholar 

  70. Shao, J., L. Wu, J. Wu, Y. Zheng, H. Zhao, Q. Jin, and J. Zhao. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9(21):3118–3125, 2009.

    Article  PubMed  CAS  Google Scholar 

  71. Shein, M., A. Greenbaum, T. Gabay, R. Sorkin, M. David-Pur, E. Ben-Jacob, and Y. Hanein. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed. Microdevices 11(2):495–501, 2009.

    Article  PubMed  CAS  Google Scholar 

  72. Shimizu, H., K. Ohashi, R. Utoh, K. Ise, M. Gotoh, M. Yamato, and T. Okano. Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30(30):5943–5949, 2009.

    Article  PubMed  CAS  Google Scholar 

  73. Shin, Y., J. S. Jeon, S. Han, G. S. Jung, S. Shin, S. H. Lee, R. Sudo, R. D. Kamm, and S. Chung. In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients. Lab Chip 11(13):2175–2181, 2011.

    Article  PubMed  CAS  Google Scholar 

  74. Sim, W. Y., S. W. Park, S. H. Park, B. H. Min, S. R. Park, and S. S. Yang. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip 7(12):1775–1782, 2007.

    Article  PubMed  CAS  Google Scholar 

  75. Sin, A., K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20(1):338–345, 2004.

    Article  PubMed  CAS  Google Scholar 

  76. Song, J. W., S. P. Cavnar, A. C. Walker, K. E. Luker, M. Gupta, Y. C. Tung, G. D. Luker, and S. Takayama. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4(6):e5756, 2009.

    Article  PubMed  CAS  Google Scholar 

  77. Song, J. W., W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77(13):3993–3999, 2005.

    Article  PubMed  CAS  Google Scholar 

  78. Srigunapalan, S., C. Lam, A. R. Wheeler, and C. A. Simmons. A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5(1):13409, 2011.

    Article  PubMed  CAS  Google Scholar 

  79. Stroock, A. D., and C. Fischbach. Microfluidic culture models of tumor angiogenesis. Tissue Eng. A 16(7):2143–2146, 2010.

    Article  Google Scholar 

  80. Sung, J. H., C. Kam, and M. L. Shuler. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455, 2010.

    Article  PubMed  CAS  Google Scholar 

  81. Sung, J. H., and M. L. Shuler. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9(10):1385–1394, 2009.

    Article  PubMed  CAS  Google Scholar 

  82. Tavana, H., A. Jovic, B. Mosadegh, Q. Y. Lee, X. Liu, K. E. Luker, G. D. Luker, S. J. Weiss, and S. Takayama. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 8(9):736–741, 2009.

    Article  PubMed  CAS  Google Scholar 

  83. Tavana, H., C. H. Kuo, Q. Y. Lee, B. Mosadegh, D. Huh, P. J. Christensen, J. B. Grotberg, and S. Takayama. Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Langmuir 26(5):3744–3752, 2010.

    Article  PubMed  CAS  Google Scholar 

  84. Tavana, H., P. Zamankhan, P. J. Christensen, J. B. Grotberg, and S. Takayama. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed. Microdevices 13(4):731–742, 2011.

    Article  PubMed  Google Scholar 

  85. Tilles, A. W., F. Berthiaume, M. L. Yarmush, R. G. Tompkins, and M. Toner. Bioengineering of liver assist devices. J. Hepatobiliary Pancreat. Surg. 9(6):686–696, 2002.

    Article  PubMed  Google Scholar 

  86. Toda, M., K. Yamamoto, N. Shimizu, S. Obi, S. Kumagaya, T. Igarashi, A. Kamiya, and J. Ando. Differential gene responses in endothelial cells exposed to a combination of shear stress and cyclic stretch. J. Biotechnol. 133(2):239–244, 2008.

    Article  PubMed  CAS  Google Scholar 

  87. Toh, Y. C., T. C. Lim, D. Tai, G. Xiao, D. van Noort, and H. Yu. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9(14):2026–2035, 2009.

    Article  PubMed  CAS  Google Scholar 

  88. Toh, Y. C., C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher, and H. Yu. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302–309, 2007.

    Article  PubMed  CAS  Google Scholar 

  89. Torisawa, Y. S., B. Mosadegh, T. Bersano-Begey, J. M. Steele, K. E. Luker, G. D. Luker, and S. Takayama. Microfluidic platform for chemotaxis in gradients formed by CXCL12 source-sink cells. Integr. Biol. (Camb) 2(11–12):680–686, 2010.

    Article  CAS  Google Scholar 

  90. Tumarkin, E., L. Tzadu, E. Csaszar, M. Seo, H. Zhang, A. Lee, R. Peerani, K. Purpura, P. W. Zandstra, and E. Kumacheva. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol. 3(6):653–662, 2011.

    Article  CAS  Google Scholar 

  91. Unger, M. A., H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116, 2000.

    Article  PubMed  CAS  Google Scholar 

  92. van der Meer, A. D., K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 298(2):H719–H725, 2010.

    Article  PubMed  CAS  Google Scholar 

  93. van Midwoud, P. M., M. T. Merema, E. Verpoorte, and G. M. Groothuis. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10(20):2778–2786, 2010.

    Article  PubMed  CAS  Google Scholar 

  94. Verbridge, S. S., N. W. Choi, Y. Zheng, D. J. Brooks, A. D. Stroock, and C. Fischbach. Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng. A 16(7):2133–2141, 2010.

    Article  CAS  Google Scholar 

  95. Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.

    Article  PubMed  CAS  Google Scholar 

  96. Viravaidya, K., and M. L. Shuler. Incorporation of 3T3–L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20(2):590–597, 2004.

    Article  PubMed  CAS  Google Scholar 

  97. Viravaidya, K., A. Sin, and M. L. Shuler. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20(1):316–323, 2004.

    Article  PubMed  CAS  Google Scholar 

  98. Vishwanathan, A., G. Q. Bi, and H. C. Zeringue. Ring-shaped neuronal networks: a platform to study persistent activity. Lab Chip 11(6):1081–1088, 2011.

    Article  PubMed  CAS  Google Scholar 

  99. Walsh, C. L., B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. McGarry, and N. S. Forbes. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 9(4):545–554, 2009.

    Article  PubMed  CAS  Google Scholar 

  100. Wang, Y., R. Dhopeshwarkar, R. Najdi, M. L. Waterman, C. E. Sims, and N. Allbritton. Microdevice to capture colon crypts for in vitro studies. Lab Chip 10(12):1596–1603, 2010.

    Article  PubMed  CAS  Google Scholar 

  101. Wang, Y., J. F. Lo, J. E. Mendoza-Elias, A. F. Adewola, T. A. Harvat, K. P. Kinzer, D. Lee, M. Qi, D. T. Eddington, and J. Oberholzer. Application of microfluidic technology to pancreatic islet research: first decade of endeavor. Bioanalysis 2(10):1729–1744, 2010.

    Article  PubMed  CAS  Google Scholar 

  102. Wei, C. W., J. Y. Cheng, and T. H. Young. Elucidating in vitro cell-cell interaction using a microfluidic coculture system. Biomed. Microdevices 8(1):65–71, 2006.

    Article  PubMed  CAS  Google Scholar 

  103. Williams, C. H., and C. C. Hong. Multi-step usage of in vivo models during rational drug design and discovery. Int. J. Mol. Sci. 12(4):2262–2274, 2011.

    Article  PubMed  CAS  Google Scholar 

  104. Wlodkowic, D., and Z. Darzynkiewicz. Rise of the micromachines: microfluidics and the future of cytometry. Methods Cell Biol. 102:105–125, 2011.

    Article  PubMed  Google Scholar 

  105. Wu, L. Y., D. Di Carlo, and L. P. Lee. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed. Microdevices 10(2):197–202, 2008.

    Article  PubMed  CAS  Google Scholar 

  106. Yang, J., M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida, and T. Okano. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043, 2007.

    Article  PubMed  CAS  Google Scholar 

  107. Zhang, C., Z. Zhao, N. A. Abdul Rahim, D. van Noort, and H. Yu. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9(22):3185–3192, 2009.

    Article  PubMed  CAS  Google Scholar 

  108. Zheng, Y., P. W. Henderson, N. W. Choi, L. J. Bonassar, J. A. Spector, and A. D. Stroock. Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32(23):5391–5401, 2011.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Takayama.

Additional information

Associate Editor Michael Shuler oversaw the review of this article.

The first three authors contributed equally in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, C., Mehta, G., Lesher-Perez, S.C. et al. Organs-on-a-Chip: A Focus on Compartmentalized Microdevices. Ann Biomed Eng 40, 1211–1227 (2012). https://doi.org/10.1007/s10439-011-0455-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0455-6

Keywords

Navigation