Skip to main content

Advertisement

Log in

Fibrin Gel as Alternative Scaffold for Respiratory Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fibrin gel has proven a valuable scaffold for tissue engineering. Complex geometries can be produced by injection molding; it offers effective cell seeding and can be produced autologous. In order to evaluate its suitability for respiratory tissue engineering, we examined proliferation, functionality, and differentiation of respiratory epithelial cells on fibrin gel in comparison to culture on collagen-coated, microporous membranes. Respiratory epithelial cells formed a confluent layer by day 4, and proliferation showed no significant difference with respect to surface. Measurement of the transepithelial electrical resistance reflected the development of a confluent epithelial cell layer and the subsequent initiation of adequate ion-transfer processes. Appearance of ciliae could be detected at similar time points, and ciliary beating could be observed for cells on both surfaces. Histology and immunohistochemistry of cells grown on fibrin gel revealed the onset of adequate differentiation. As no significant differences in respiratory epithelial cells’ proliferation, function, and differentiation could be observed between cells grown on fibrin gel compared to cells on a collagen-coated, microporous surface, we concluded that fibrin gel might prove a suitable scaffold for respiratory tissue engineering and merits further investigation to overcome the limitations associated with scaffolds currently in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahmed, T. A, E. V. Dare, M. T. Hincke. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B Rev. 14:199–215, 2008 [Epub ahead of print].

  2. Bader, A., T. Schilling, O. E. Teebken, G. Brandes, T. Herden, G. Steinhoff, and A. Haverich. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14(3):279–284, 1998.

    Article  PubMed  CAS  Google Scholar 

  3. Coleman, D. L., I. K. Tuet, and J. H. Widdicombe. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol. 246:C335–C359, 1984.

    Google Scholar 

  4. Ferguson, D. I., I. J. Wild, and O. H. Wangensteen. Experimental resection of the trachea. Surgery 28:597–619, 1950.

    PubMed  CAS  Google Scholar 

  5. Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388, 2007.

    Article  PubMed  CAS  Google Scholar 

  6. Galler, K. M., A. C. Cavender, U. Koeklue, L. J. Suggs, G. Schmalz, and R. N. D’Souza. Bioengineering of dental stem cells in a PEGylated fibrin gel. Regen. Med. 6(2):191–200, 2011.

    Article  PubMed  CAS  Google Scholar 

  7. Hildebrandt, F., T. Benzing, and N. Katsanis. Ciliopathies. N. Engl. J. Med. 364(16):1533–1543, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Jockenhoevel, S., K. Chalabi, J. S. Sachweh, H. V. Groesdonk, L. Demircan, M. Grossmann, G. Zund, and B. J. Messmer. Tissue engineering: complete autologous valve conduit—a new moulding technique. Thorac. Cardiovasc. Surg. 49(5):287–290, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Koch, S., T. C. Flanagan, J. S. Sachweh, F. Tanios, H. Schnoering, T. Deichmann, V. Ellä, M. Kellomäki, N. Gronloh, T. Gries, R. Tolba, T. Schmitz-Rode, and S. Jockenhoevel. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31(17):4731–4739, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Kucera, K. A., A. E. Doss, S. S. Dunn, L. A. Clemson, and J. B. Zwischenberger. Tracheal replacements: part 1. ASAIO J. 53:497–505, 2007.

    Article  PubMed  Google Scholar 

  11. Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.

    Article  PubMed  Google Scholar 

  12. Matloub, H. S., and P. Yu. Engineering a composite neotrachea in a rat model. Plast. Reconstr. Surg. 117(1):123–128, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Mol, A., C. V. Bouten, F. P. Baaijens, G. Zünd, M. I. Turina, and S. P. Hoerstrup. Review article: tissue engineering of semilunar heart valves: current status and future developments. J. Heart Valve Dis. 13(2):272–280, 2004.

    PubMed  Google Scholar 

  14. Park, S. H., B. H. Choi, S. R. Park, and B. H. Min. Chondrogenesis of rabbit mesenchymal stemcells in fibrin/hyaluronan composite scaffold in vitro. Tissue Eng. A 17(9-10):1277–1286, 2011.

    Article  CAS  Google Scholar 

  15. Sodian, R., M. Loebe, A. Hein, D. P. Martin, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, T. Lueth, and R. Hetzer. Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J. 48(1):12–16, 2002.

    Article  PubMed  Google Scholar 

  16. Stock, U. A., J. P. Vacanti, J. E. Mayer, Jr, and T. Wahlers. Tissue engineering of heart valves—current aspects. Thorac. Cardiovasc. Surg. 50(3):184–193, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Widdicombe, J. H., A. S. Lorne, L. M. Joby, and E. F. Walter. Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. Biotechniques 39:249–255, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Yamaya, M., W. E. Finkbeiner, S. Y. Chun, and J. H. Widdicombe. Differentiated structure and function of cultures from human tracheal epithelium. Am. J. Physiol. 262:L713–L724, 1992.

    PubMed  CAS  Google Scholar 

  19. Zhao, F., Y. Zhang, S. Liu, and J. Yu. Artificial trachea reconstruction with two-stage approach using memory-alloy mesh. Chin. Med. J. (Engl) 116(12):1949–1951, 2003.

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the START program of the Medical Faculty of the RWTH Aachen University.

Conflict of interest

The authors declare that they have no competing financial or other interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jockenhoevel.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 15588 kb)

Supplementary material 2 (AVI 29199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelissen, C.G., Dietrich, M., Krüger, S. et al. Fibrin Gel as Alternative Scaffold for Respiratory Tissue Engineering. Ann Biomed Eng 40, 679–687 (2012). https://doi.org/10.1007/s10439-011-0437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0437-8

Keywords

Navigation