Skip to main content

Advertisement

Log in

Angiogenesis-Associated Crosstalk Between Collagens, CXC Chemokines, and Thrombospondin Domain-Containing Proteins

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel [Proc. Natl. Acad. Sci. USA 105(37):13775–13780, 2008] used a bioinformatics approach to identify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain of the proteins they were derived from. The families included type IV collagen fibrils, CXC chemokine ligands, and type I thrombospondin domain-containing proteins. The relationships between these families have received relatively little attention. To investigate these relationships, we approached the problem by placing the families of proteins in the context of the human interactome including >120,000 physical interactions among proteins, genes, and transcripts. We built on a graph theoretic approach to identify proteins that may represent conduits of crosstalk between protein families. We validated these findings by statistical analysis and analysis of a time series gene expression data set taken during angiogenesis. We identified six proteins at the center of the angiogenesis-associated network including three syndecans, MMP9, CD44, and versican. These findings shed light on the complex signaling networks that govern angiogenesis phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Albig, A. R., J. R. Neil, and W. P. Schiemann. Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res. 66(5):2621–2629, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Ashburner, M., C. A. Ball, J. A. Blake, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25(1):25–29, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Bauer, S., S. Grossmann, M. Vingron, et al. Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14):1650–1651, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Breitkreutz, B. J., C. Stark, T. Reguly, et al. The BioGRID Interaction Database: 2008 update. Nucleic Acids Res. 36(Database issue):D637–D640, 2008.

    PubMed  CAS  Google Scholar 

  5. Cano Mdel, V., E. D. Karagiannis, M. Soliman, et al. A peptide derived from type 1 thrombospondin repeat-containing protein WISP-1 inhibits corneal and choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 50(8):3840–3845, 2009.

    Article  PubMed  Google Scholar 

  6. Cao, G., R. C. Savani, M. Fehrenbach, et al. Involvement of endothelial CD44 during in vivo angiogenesis. Am. J. Pathol. 169(1):325–336, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21):1182–1186, 1971.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6(4):273–286, 2007.

    Article  PubMed  CAS  Google Scholar 

  9. Gioia, M., S. Monaco, P. E. Van Den Steen, et al. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol. 386(2):419–434, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Jayapandian, M., A. Chapman, V. G. Tarcea, et al. Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucleic Acids Res. 35(Database issue):D566–D571, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Karagiannis, E. D., and A. S. Popel. A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J. Biol. Chem. 279(37):39105–39114, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Karagiannis, E. D., and A. S. Popel. Anti-angiogenic peptides identified in thrombospondin type I domains. Biochem. Biophys. Res. Commun. 359(1):63–69, 2007.

    Article  PubMed  CAS  Google Scholar 

  13. Karagiannis, E. D., and A. S. Popel. Peptides derived from type I thrombospondin repeat-containing proteins of the CCN family inhibit proliferation and migration of endothelial cells. Int. J. Biochem. Cell Biol. 39(12):2314–2323, 2007.

    Article  PubMed  CAS  Google Scholar 

  14. Karagiannis, E. D., and A. S. Popel. A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc. Natl. Acad. Sci. USA 105(37):13775–13780, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Karagiannis, E. D., and A. S. Popel. Novel anti-angiogenic peptides derived from ELR-containing CXC chemokines. J. Cell. Biochem. 104(4):1356–1363, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Keshava Prasad, T. S., R. Goel, K. Kandasamy, et al. Human Protein Reference Database—2009 update. Nucleic Acids Res. 37(Database issue):D767–D772, 2009.

    Article  PubMed  CAS  Google Scholar 

  17. Killcoyne, S., G. W. Carter, J. Smith, et al. Cytoscape: a community-based framework for network modeling. Methods Mol. Biol. 563:219–239, 2009.

    Article  PubMed  CAS  Google Scholar 

  18. Koskimaki, J. E., E. D. Karagiannis, E. V. Rosca, et al. Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11(12):1285–1291, 2009.

    PubMed  CAS  Google Scholar 

  19. Koskimaki, J. E., E. D. Karagiannis, B. C. Tang, et al. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer 10:29, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. Kuo, H. J., C. L. Maslen, D. R. Keene, et al. Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J. Biol. Chem. 272(42):26522–26529, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Li, Y., P. Agarwal, and D. Rajagopalan. A global pathway crosstalk network. Bioinformatics 24(12):1442–1447, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. McCarty, M. F. Toward prevention of Alzheimers disease—potential nutraceutical strategies for suppressing the production of amyloid beta peptides. Med. Hypotheses 67(4):682–697, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Mellberg, S., A. Dimberg, F. Bahram, et al. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 23(5):1490–1502, 2009.

    Article  PubMed  CAS  Google Scholar 

  24. Mira, E., R. A. Lacalle, J. M. Buesa, et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J. Cell Sci. 117(Pt 9):1847–1857, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Nagase, H., and J. F. Woessner, Jr. Matrix metalloproteinases. J. Biol. Chem. 274(31):21491–21494, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Natarajan, M., K. M. Lin, R. C. Hsueh, et al. A global analysis of cross-talk in a mammalian cellular signalling network. Nat. Cell Biol. 8(6):571–580, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Opdenakker, G., P. E. Van den Steen, B. Dubois, et al. Gelatinase B functions as regulator and effector in leukocyte biology. J. Leukoc. Biol. 69(6):851–859, 2001.

    PubMed  CAS  Google Scholar 

  28. Ruoslahti, E. Fibronectin. J. Oral Pathol. 10(1):3–13, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Schonherr, E., C. Sunderkotter, L. Schaefer, et al. Decorin deficiency leads to impaired angiogenesis in injured mouse cornea. J. Vasc. Res. 41(6):499–508, 2004.

    Article  PubMed  Google Scholar 

  30. Silva, R., G. D’Amico, K. M. Hodivala-Dilke, et al. Integrins: the keys to unlocking angiogenesis. Arterioscler. Thromb. Vasc. Biol. 28(10):1703–1713, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Subramanian, A., P. Tamayo, V. K. Mootha, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43):15545–15550, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Suo, Z., J. Humphrey, A. Kundtz, et al. Soluble Alzheimers beta-amyloid constricts the cerebral vasculature in vivo. Neurosci. Lett. 257(2):77–80, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Tarcea, V. G., T. Weymouth, A. Ade, et al. Michigan molecular interactions r2: from interacting proteins to pathways. Nucleic Acids Res. 37(Database issue):D642–D646, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Tkachenko, E., J. M. Rhodes, and M. Simons. Syndecans: new kids on the signaling block. Circ. Res. 96(5):488–500, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Tony, J. C. Alzheimer’s disease and angiogenesis. Lancet 361(9365):1300, 2003.

    Article  PubMed  Google Scholar 

  36. Tsuda, K., and W. S. Noble. Learning kernels from biological networks by maximizing entropy. Bioinformatics 20(Suppl. 1):326–333, 2004.

    Article  Google Scholar 

  37. Vastrik, I., P. D’Eustachio, E. Schmidt, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 8(3):R39, 2007.

    Article  PubMed  Google Scholar 

  38. Zielinski, R., P. F. Przytycki, J. Zheng, et al. The crosstalk between EGF, IGF, and Insulin cell signaling pathways—computational and experimental analysis. BMC Syst. Biol. 3:88, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by NIH grants R01 HL101200 and R01 CA138264. The authors would like to thank Emmanouil Karagiannis for helpful discussions at the initial stage of the project. We would also like to thank Sofie Mellberg and Lena Claesson-Welsh for use of their time series gene expression dataset. CGR implemented the method, performed the analysis, generated the images and wrote the paper. ASP and JSB designed the study and edited the paper.

Conflict of Interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corban G. Rivera.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, C.G., Bader, J.S. & Popel, A.S. Angiogenesis-Associated Crosstalk Between Collagens, CXC Chemokines, and Thrombospondin Domain-Containing Proteins. Ann Biomed Eng 39, 2213–2222 (2011). https://doi.org/10.1007/s10439-011-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0325-2

Keywords

Navigation