Skip to main content

Advertisement

Log in

Mechanical Properties of Achilles Tendon in Rats Induced to Experimental Diabetes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to quantify the effect of chemically induced diabetes mellitus (DM) on the mechanical properties of the Achilles tendon of rats and correlate it with metabolic and biomechanical findings. Adult rats were selected randomly and assigned to two groups, the diabetic group consisted of animals receiving a dose of streptozotocin to induce type I diabetes and the control group. The animals were placed in metabolic cages for analysis of metabolism. Ten weeks after diabetes induction, the Achilles tendon of both groups were collected and submitted to a traction test in a conventional testing machine. The measurements of mechanical properties indicated that the elastic modulus (MPa) was significantly higher in the control group (p < 0.01). In Maximum tension (MPa), the groups did not have differences (p > 0.01). Energy/tendon area (N mm/mm2), specific strain (%) and maximum specific strain (mm) were higher in tendon tests of the diabetic group (p < 0.01). We observed that the mechanical properties of tendons have correlations with metabolic properties of the diabetic animals. These results showed that induced DM in rats have an important negative effect on the mechanical properties of the Achilles tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Akturk, M., et al. Thickness of the supraspinatus and biceps tendons in diabetic patients. Diabetes Care 25(2):408, 2002.

    Article  PubMed  Google Scholar 

  2. Akturk, M., et al. Evaluation of Achilles tendon thickening in type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 115(2):92–96, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Almeida-Silveira, M. I., et al. Changes in stiffness induced by hindlimb suspension in rat Achilles tendon. Eur. J. Appl. Physiol. 81(3):252–257, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Andreassen, T. T., H. Oxlund, and C. C. Danielsen. The influence of non-enzymatic glycosylation and formation of fluorescent reaction products on the mechanical properties of rat tail tendons. Connect. Tissue Res. 17(1):1–9, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Aydeniz, A., S. Gursoy, and E. Guney. Which musculoskeletal complications are most frequently seen in type 2 diabetes mellitus? J. Int. Med. Res. 36(3):505–511, 2008.

    PubMed  CAS  Google Scholar 

  6. Batista, F., et al. Achilles tendinopathy in diabetes mellitus. Foot Ankle Int. 29(5):498–501, 2008.

    Article  PubMed  Google Scholar 

  7. Biewener, A. A., and T. J. Roberts. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc. Sport Sci. Rev. 28(3):99–107, 2000.

    PubMed  CAS  Google Scholar 

  8. Biewener, A. A., et al. Muscle mechanical advantage of human walking and running: implications for energy cost. J. Appl. Physiol. 97(6):2266–2274, 2004.

    Article  PubMed  Google Scholar 

  9. Bobbert, M. F. Dependence of human squat jump performance on the series elastic compliance of the triceps surae: a simulation study. J. Exp. Biol. 204(Pt 3):533–542, 2001.

    PubMed  CAS  Google Scholar 

  10. Bolton, N. R., et al. Computed tomography to visualize and quantify the plantar aponeurosis and flexor hallucis longus tendon in the diabetic foot. Clin. Biomech. (Bristol, Avon) 20(5):540–546, 2005.

    Article  Google Scholar 

  11. Buchanan, C. I., and R. L. Marsh. Effects of long-term exercise on the biomechanical properties of the Achilles tendon of guinea fowl. J. Appl. Physiol. 90(1):164–171, 2001.

    PubMed  CAS  Google Scholar 

  12. DiDomenico, L. A., K. Williams, and A. F. Petrolla. Spontaneous rupture of the anterior tibial tendon in a diabetic patient: results of operative treatment. J. Foot Ankle Surg. 47(5):463–467, 2008.

    Article  PubMed  Google Scholar 

  13. Giacomozzi, C., et al. Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin. Biomech. (Bristol, Avon) 20(5):532–539, 2005.

    Article  CAS  Google Scholar 

  14. Grant, W. P., et al. Electron microscopic investigation of the effects of diabetes mellitus on the Achilles tendon. J. Foot Ankle Surg. 36(4):272–278, 1997; (discussion 330).

    Article  PubMed  CAS  Google Scholar 

  15. Hof, A. L., J. P. Van Zandwijk, and M. F. Bobbert. Mechanics of human triceps surae muscle in walking, running and jumping. Acta Physiol. Scand. 174(1):17–30, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Legerlotz, K., et al. The effect of running, strength, and vibration strength training on the mechanical, morphological, and biochemical properties of the Achilles tendon in rats. J. Appl. Physiol. 102(2):564–572, 2007.

    Article  PubMed  CAS  Google Scholar 

  17. Lerco, M. M., et al. Caracterização de um modelo experimental de Diabetes Mellitus, induzido pela aloxana em ratos: estudo clínico e laboratorial. Acta Cir. Brasil. 18:132–142, 2003.

    Google Scholar 

  18. Loren, G. J., and R. L. Lieber. Tendon biomechanical properties enhance human wrist muscle specialization. J. Biomech. 28(7):791–799, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Magnusson, S. P., P. Hansen, and M. Kjaer. Tendon properties in relation to muscular activity and physical training. Scand. J. Med. Sci. Sports 13(4):211–223, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Monnier, V. M., R. R. Kohn, and A. Cerami. Accelerated age-related browning of human collagen in diabetes mellitus. Proc. Natl. Acad. Sci. USA 81(2):583–587, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Müller, S. S., et al. Análise comparativa das propriedades mecânicas do ligamento da patela e do tendão calcâneo. Acta Ortop. Brasil. 12:134–140, 2004.

    Google Scholar 

  22. Natali, L. H., et al. Efeitos da corrida em esteira em músculos sóleos de ratos encurtados por imobilização. Rev. Bras. Med. Esporte. 14(6):490–493, 2008.

    Article  Google Scholar 

  23. Oxlund, H., R. Manthorpe, and A. Viidik. The biochemical properties of connective tissue in rabbits as influenced by short-term glucocorticoid treatment. J. Biomech. 14(3):129–133, 1981.

    Article  PubMed  CAS  Google Scholar 

  24. Papanas, N., et al. Achilles tendon volume in type 2 diabetic patients with or without peripheral neuropathy: MRI study. Exp. Clin. Endocrinol. Diabetes 117(10):645–648, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Ramirez, L. C., and P. Raskin. Diabetic foot tendinopathy: abnormalities in the flexor plantar tendons in patients with diabetes mellitus. J. Diabetes Complicat. 12(6):337–339, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Reddy, G. K., L. Stehno-Bittel, and C. S. Enwemeka. Glycation-induced matrix stability in the rabbit Achilles tendon. Arch. Biochem. Biophys. 399(2):174–180, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Roberts, T. J., and R. L. Marsh. Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs. J. Exp. Biol. 206(Pt 15):2567–2580, 2003.

    Article  PubMed  Google Scholar 

  28. Seynnes, O., et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J. Appl. Physiol. 107(2):523, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Simonsen, E. B., H. Klitgaard, and F. Bojsen-Moller. The influence of strength training, swim training and ageing on the Achilles tendon and m. soleus of the rat. J. Sports Sci. 13(4):291–295, 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50(6):537–546, 2001.

    PubMed  CAS  Google Scholar 

  31. Unlu, Z., et al. Ultrasonographic evaluation of pes anserinus tendino-bursitis in patients with type 2 diabetes mellitus. J. Rheumatol. 30(2):352–354, 2003.

    PubMed  Google Scholar 

  32. Viidik, A. The effect of training on the tensile strength of isolated rabbit tendons. Scand. J. Plast. Reconstr. Surg. 1(2):141–147, 1967.

    Article  PubMed  CAS  Google Scholar 

  33. Viidik, A., C. C. Danielson, and H. Oxlund. On fundamental and phenomenological models, structure and mechanical properties of collagen, elastin and glycosaminoglycan complexes. Biorheology 19(3):437–451, 1982.

    PubMed  CAS  Google Scholar 

  34. Vlassara, H., R. Bucala, and L. Striker. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 70(2):138–151, 1994.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All authors provided concept, idea, research design, writing, and data analysis. We acknowledge the financial support provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 477096/2008-5) and fellowship from the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) to Mr. Oliveira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ribeiro de Oliveira.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, R.R., de Lira, K.D.S., de Castro Silveira, P.V. et al. Mechanical Properties of Achilles Tendon in Rats Induced to Experimental Diabetes. Ann Biomed Eng 39, 1528–1534 (2011). https://doi.org/10.1007/s10439-011-0247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0247-z

Keywords

Navigation