Skip to main content
Log in

Electrical Impedance of Stainless Steel Needle Electrodes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present experimental findings regarding variability and stability of the electrical impedance properties of medical grade stainless steel needle electrodes in vitro. Monopolar impedance spectra (1 Hz to 1 MHz) were measured and scanning electron microscope images were obtained for five needle types with active electrode area from 0.28 to 0.7 mm2. A saline tank (0.9% NaCl) was used as tissue model. Measurements were done before and after electrolytic treatment with anodic and cathodic DC currents of 1 μA. With active electrode areas below 1 mm2, high influence from electrode polarization impedance (EPI) was expected at low frequencies (LF). For higher frequencies (HF) the EPI decreases and the impedance of the surrounding tissue is more pronounced. The hypothesis tested was that the EPI at LF would depend upon contact area, alloy composition, surface structure, and treatment of the active electrode, and at HF upon the electrode area geometry, and the specific resistivity of saline. Our results show large differences in electrical properties between needle types. After electrolytic treatment the EPI decreased. After 5–48 h of saline exposure the EPI increased, both for treated and untreated needles. Cathodic treatment gave lower impedance and drift than anodic or no treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Brummer, S. B., and M. J. Turner. Electrical stimulation with Pt electrodes: I—A method for determination of “real” electrode areas. IEEE Trans. Bio. Eng. 24(5):436–439, 1977.

    Article  CAS  Google Scholar 

  2. Bordi, F., C. Cametti, and T. Gili. Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions. Bioelectrochemistry (Amsterdam Netherlands) 54(1):53–61, 2001.

    CAS  Google Scholar 

  3. Buchthal, F., and A. Rosenfalck. Evoked action potentials and conduction velocity in human sensory nerves. Brain Res. 3:1–122, 1966.

    Article  Google Scholar 

  4. Butson, C. R., C. B. Marks, and C. C. McIntyre. Sources and effects of electrode impedance during deep brain stimulation. Clin. Neurophysiol. 117:447–454, 2006.

    Article  PubMed  Google Scholar 

  5. Cooper, R. The electrical properties of salt-water solutions over the frequency range 1–400 Mc/s. J. Inst. Elect. Eng. 93:69–75, 1946.

    Google Scholar 

  6. Dorfman, L. J., K. C. McGill, and K. L. Cummins. Electrical properties of commercial concentric EMG electrodes. Muscle Nerve 8:1–8, 1985.

    Article  CAS  PubMed  Google Scholar 

  7. Fricke, H. The theory of electrolyte polarization. Phil. Mag. 14:310–318, 1932.

    CAS  Google Scholar 

  8. Geddes, L. A., C. P. Da Costa, and G. Wise. The impedance of stainless steel electrodes. Med. Biol. Eng. 9:511–521, 1971.

    Article  CAS  PubMed  Google Scholar 

  9. Gray, J. R. Conductivity analyzers and their applications. In: Environment Instrumentation and Analysis Handbook, edited by R. D. Down and J. H. Lehr. Wiley, 2004, pp. 491–510.

  10. Grimnes, S. Impedance measurement of individual skin surface electrodes. Med. Biol. Eng. Comput. 21:750–755, 1983.

    Article  CAS  PubMed  Google Scholar 

  11. Grimnes, S., and Ø. G. Martinsen. Bioimpedance & Bioelectricity Basics (2nd ed.). San Diego: Academic Press, p. 471, 2008.

    Google Scholar 

  12. Guth, U., V. Winfried, and J. Zosel. Recent developments in electrochemical sensor application and technology—a review. Meas. Sci. Technol. 20:1–14, 2009.

    Article  Google Scholar 

  13. Jarzabek, G., and Z. Borkowska. On the real surface area of smooth solid electrodes. Electrochim. Acta 42:2915–2918, 1997.

    Article  CAS  Google Scholar 

  14. Johnson, M. D., K. J. Otto, J. C. Williams, and D. R. Kipke. Bias voltages at microelectrodes change neural interface properties in vivo. In: Proceedings of the 26th Conference IEEE EMBS, 2004, pp. 4103–4106.

  15. Kalvøy, H., L. Frich, S. Grimnes, Ø. G. Martinsen, P. K. Hol, and A. Stubbhaug. Impedance based tissue discrimination for needle guidance. Physiol. Meas. 30:129–140, 2009.

    Article  PubMed  Google Scholar 

  16. Kalvøy, H., B. Nordbotten, C. Tronstad, Ø. G. Martinsen, and S. Grimnes. Impedance properties of stainless steel needle electrodes. Proc. WC2009 IFMBE 25:380–383, 2009.

    Google Scholar 

  17. Khambete, N. D., J. Shashidhara, G. S. Bhuvaneshwar, and R. Sivakumar. Impedance measurement system for concentric needle electrodes. In: Proceedings of the RC IEEE-EMBS & 14th, 1995, pp. 1.1–1.2.

  18. Kinouchi, Y., T. Iritani, T. Morimoto, and S. Ohyama. Fast in vivo measurements of local tissue impedances using needle electrodes. Med. Biol. Eng. Comput. 35:486–492, 1997.

    Article  CAS  PubMed  Google Scholar 

  19. Ludin, H. P. Electromyography in Practice. Stuttgart-New York: Thieme, 1980.

    Google Scholar 

  20. Merrill, D. R., M. Bikson, and J. G. R. Jeggerys. Invited review. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141:171–198, 2005.

    Article  PubMed  Google Scholar 

  21. Mirtaheri, P., S. Grimnes, and Ø. G. Martinsen. Electrode polarization impedance in weak NaCl aqueous solutions. IEEE Trans. Biomed. Eng. 52:2093–2099, 2005.

    Article  PubMed  Google Scholar 

  22. Mirtaheri, P., S. Grimnes, Ø. G. Martinsen, and T. I. Tønnessen. A new biomedical sensor for measuring PCO2. Physiol. Meas. 25:421–436, 2004.

    Article  PubMed  Google Scholar 

  23. Sauter, A. R., M. S. Dodgson, H. Kalvøy, S. Grimnes, A. Stubhaug, and Ø. Klaastad. Current threshold for nerve stimulation depends on electrical impedance of the tissue: a study of ultrasound-guided electrical nerve stimulation of the median nerve. Anesth. Analg. 108(4):1338–1343, 2009.

    Article  PubMed  Google Scholar 

  24. Schaldach, M. New aspects in electrostimulation of the heart. Med. Prog. Technol. 21:1–16, 1995.

    CAS  PubMed  Google Scholar 

  25. Schwan, H. P. Determination of biological impedances. In: Physical Techniques in Biological Research, Vol. 6, edited by W. L. Nastuk. New York: Academic, 1963, pp. 323–407.

  26. Schwan, H. P. Linear and nonlinear electrode polarization and biological materials. Ann. Biomed. Eng. 20:269–288, 1992.

    Article  CAS  PubMed  Google Scholar 

  27. Wiechers, D. O., R. Jeffrey, and W. Richard. EMG needle electrodes: electrical impedance. Arch. Phys. Med. Rehabil. 60:364–369, 1979.

    CAS  PubMed  Google Scholar 

  28. Woo, E. J., S. Tungjitkusolmun, H. Cao, J. Z. Tsai, J. G. Webster, V. R. Vorperian, and J. A. Will. A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: finite element analysis and in vitro experiments. IEEE Trans. Biomed. Eng. 47:23–31, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank The Centre for Materials Science and Nanotechnology, University of Oslo for excellent assistance during the SEM-scans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håvard Kalvøy.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalvøy, H., Tronstad, C., Nordbotten, B. et al. Electrical Impedance of Stainless Steel Needle Electrodes. Ann Biomed Eng 38, 2371–2382 (2010). https://doi.org/10.1007/s10439-010-9989-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9989-2

Keywords

Navigation