Skip to main content
Log in

An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study presents a new steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI). SSVEPs, induced by phase-tagged flashes in eight light emitting diodes (LEDs), were used to control four cursor movements (up, right, down, and left) and four button functions (on, off, right-, and left-clicks) on a screen menu. EEG signals were measured by one EEG electrode placed at Oz position, referring to the international EEG 10-20 system. Since SSVEPs are time-locked and phase-locked to the onsets of SSVEP flashes, EEG signals were bandpass-filtered and segmented into epochs, and then averaged across a number of epochs to sharpen the recorded SSVEPs. Phase lags between the measured SSVEPs and a reference SSVEP were measured, and targets were recognized based on these phase lags. The current design used eight LEDs to flicker at 31.25 Hz with 45° phase margin between any two adjacent SSVEP flickers. The SSVEP responses were filtered within 29.25–33.25 Hz and then averaged over 60 epochs. Owing to the utilization of high-frequency flickers, the induced SSVEPs were away from low-frequency noises, 60 Hz electricity noise, and eye movement artifacts. As a consequence, we achieved a simple architecture that did not require eye movement monitoring or other artifact detection and removal. The high-frequency design also achieved a flicker fusion effect for better visualization. Seven subjects were recruited in this study to sequentially input a command sequence, consisting of a sequence of eight cursor functions, repeated three times. The accuracy and information transfer rate (mean ± SD) over the seven subjects were 93.14 ± 5.73% and 28.29 ± 12.19 bits/min, respectively. The proposed system can provide a reliable channel for severely disabled patients to communicate with external environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

Similar content being viewed by others

References

  1. Basar, E. Brain functions and oscillation. In: Cross-Modality Experiments on the Cat Brain, edited by E. Basar, T. Demiralp, M. Schurmann, and C. Basar-Eroglu. Berlin: Springer-Verlag, 1999, pp. 27–59.

    Google Scholar 

  2. Baseler, H. A., E. E. Sutter, S. A. Klein, and T. Carney. The topography of visual evoked response properties across the visual field. Electroencephalogr. Clin. Neurophysiol. 90:65–81, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Birbaumer, N., H. Flor, N. Ghanayim, T. Hinterberger, I. Iverson, E. Taub, B. Kotchoubey, A. Kubler, and J. Perelmouter. A spelling device for the paralyzed. Nature 398:297–298, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Brown, B., and M. Z. Yu. Variation of topographic visually evoked potentials across the visual field. Ophthal. Physl. Opt. 17:25–31, 1997.

    Article  Google Scholar 

  5. Carlin, L., E. S. Roach, A. Riela, E. Spudis, and W. T. McLean. Juvenile metachromatic leukodystrophy: evoked potentials and computed tomography. Ann. Neurol. 13:105–106, 1983.

    Article  CAS  PubMed  Google Scholar 

  6. Carpenter, R. H. S. Movements of the Eyes (2nd ed.). London, England: Pion, 1988.

    Google Scholar 

  7. Cheng, M., X. Gao, S. Gao, and D. Xu. Design and implementation of a brain–computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49:1181–1186, 2002.

    Article  PubMed  Google Scholar 

  8. Clark, V. P., and S. A. Hillyard. Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J. Cogn. Neurosci. 8:387–402, 1996.

    Article  Google Scholar 

  9. Cornsweet, T. N. Visual Perception. New York: Academic, 1970.

    Google Scholar 

  10. Ding, J., G. Sperling, and R. Srinivasan. Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cerebral Cortex 16:1016–1029, 2006.

    Article  PubMed  Google Scholar 

  11. Donchin, E., K. M. Spencer, and R. Wilesinghe. The mental prosthesis: assessing the speed of a P300-based braincomputer interface. IEEE Trans. Rehabil. Eng. 8:174–179, 2000.

    Article  CAS  PubMed  Google Scholar 

  12. Duchowski, A. T. Eye tracking methodology: theory and practice. In: Eye Tracking Technologies. London, England: Springer Publishers, 2003, pp. 55–65.

  13. Fries, P., J. H. Reynolds, A. E. Rorie, and R. Desimone. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Eriksen, C. W., and J. D. St. James. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40:225–240, 1986.

    CAS  PubMed  Google Scholar 

  15. Haselsteiner, E., and G. Pfurtscheller. Using time-dependent neural networks for EEG classification. IEEE Trans. Rehabil. Eng. 8:457–463, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Heinze, H. J., G. R. Mangun, W. Burchert, H. Hinrichs, M. Scholz, T. F. Munte, A. Gos, M. Scherg, S. Johannes, H. Hundeshagen, M. S. Gazzaniga, and S. A. Hillyard. Combined spatial and temporal imaging of brain activity during visual selective attention in human. Nature 372:543–546, 1994.

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann, C. S. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137:346–353, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Hillyard, S. A., and L. Anllo-Vento. Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acad. Sci. USA 95:781–787, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Hinterberger, T., A. Kubler, J. Kaiser, N. Neumann, and N. Birbaumer. A brain–computer interface (BCI) for the locked-in: comparison of different EEG classifications for thought translation device. Clin. Neurophosiol. 114:416–425, 2003.

    Article  Google Scholar 

  20. Jung, T. P., S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and J. T. Sejnowski. Analysis and visualization of single-trial event-related potentials. Hum. Brain Mapp. 14:166–185, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, S. P., E. C. Lalor, R. B. Reilly, and J. J. Foxe. Visual spatial attention tracking using high density SSVEP data for independent brain–computer communication. IEEE Trans. Neural Syst. Rehabil. Eng. 13:172–178, 2005.

    Article  PubMed  Google Scholar 

  22. Krishnaveni, V., S. Jayaraman, S. Aravind, V. Hariharasudhan, and K. Ramadoss. Automatic identification and removal of ocular artifacts from EEG using wavelet transform. Meas. Sci. Rev. 6:45–57, 2006.

    Google Scholar 

  23. Kriss, A., W. M. Carroll, L. D. Blumhardt, and A. M. Halliday. Pattern and flash evoked potential changes in toxic (nutritional) optic neuropathy. Adv. Neurol. 32:11–19, 1982.

    CAS  PubMed  Google Scholar 

  24. Lee, P. L., Y. T. Wu, L. F. Chen, Y. S. Chen, C. M. Cheng, T. C. Yeh, L. T. Ho, M. S. Chang, and J. C. Hsieh. ICA based spatiotemporal approach for single-trial analysis of post-movement MEG beta synchronization. Neuroimage 20:2010–2030, 2003.

    Article  PubMed  Google Scholar 

  25. Lee, P. L., C. H. Wu, Y. T. Wu, L. F. Chen, T. C. Yeh, and J. C. Hsieh. Visual evoked potential (VEP)—actuated brain computer interface: a brain-actuated cursor system. Electron. Lett. 21:832–834, 2005.

    Article  Google Scholar 

  26. Lee, P. L., J. C. Hsieh, C. H. Wu, K. K. Shyu, S. S. Chen, T. C. Yeh, and Y. T. Wu. The brain computer interface using flash visual evoked potential and independent component analysis. Ann. Biomed. Eng. 34:1641–1654, 2006.

    Article  PubMed  Google Scholar 

  27. Lee, P. L., J. C. Hsieh, C. H. Wu, K. K. Shyu, and Y. T. Wu. Brain computer interface using flash onset and offset visual evoked potentials. Clin. Neurophysiol. 119:605–616, 2008.

    Article  PubMed  Google Scholar 

  28. Lin, Z., C. Zhang, W. Wu, and X. Gao. Correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 54:1172–1176, 2007.

    Article  PubMed  Google Scholar 

  29. Luck, S. J., L. Chellazzi, S. A. Hillyard, and R. Desimone. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 macaque visual cortex. J. Neurophysiol. 77:24–42, 1997.

    CAS  PubMed  Google Scholar 

  30. Mangun, G. R., and S. A. Hillyard. Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalogr. Clin. Neurophysiol. 75:417–428, 1988.

    Google Scholar 

  31. Manoilov, P. EEG eye-blinking artefacts power spectrum analysis. CompSysTech IIIA:1–5, 2006.

    Google Scholar 

  32. Markand, O. N., B. P. Garg, W. E. DeMyer, and C. Warren. Brain stem auditory, visual and somatosensory evoked potentials in leukodystrophies. Electroencephalogr. Clin. Neurophysiol. 54:39–48, 1982.

    Article  CAS  PubMed  Google Scholar 

  33. Mason, S. G., and G. E. Birch. A brain-controlled switch for asynchronous control applications. IEEE Trans. Biomeed. Eng. 47:1297–1307, 2000.

    Article  CAS  Google Scholar 

  34. McKeown, M. J., S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski. Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6:160–188, 1998.

    Article  CAS  PubMed  Google Scholar 

  35. McMains, S. A., and D. C. Somers. Multiple spotlights of attentional selection in human visual cortex. Neuron 42:677–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. McSherry, J. W., C. L. Walters, and J. D. Horbar. Acute visual evoked potential changes in hydrocephalus. Electroencephalogr. Clin. Neurophysiol. 53:331–333, 1982.

    Article  CAS  PubMed  Google Scholar 

  37. Meinicke, P., M. Kaper, F. Hoppe, M. Heumann, and H. Ritter. Improving transfer rates in brain computer interfacing: a case study. Adv. Neural. Inf. Proc. Syst. 15:1131–1138, 2003.

    Google Scholar 

  38. Middendorf, M., G. McMillan, G. Calhoun, and K. S. Jones. Brain–computer interface based on the steady-state visual-evoked response. IEEE Trans. Neural Syst. Rehabil. Eng. 8:211–214, 2000.

    CAS  Google Scholar 

  39. Palaniappan, R., R. Paramesran, S. Nishida, and N. Saiwaki. A new brain–computer interface using fuzzy ARTMAP. IEEE Trans. Neural. Syst. Rehabil. 10:140–148, 2002.

    Article  Google Scholar 

  40. Pfurtscheller, G., C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Obermaier, and M. Pregenzer. Current trends in Graz brain–computer interface (BCI) research. IEEE Trans. Rehabil. Eng. 8:216–219, 2000.

    Article  CAS  PubMed  Google Scholar 

  41. Raitta, C., U. Karhunene, A. M. Seppalainen, and M. Naukkarinen. Changes in the electroretinogram and visual evoked potentials during general anaesthesia. Albrecht von Graefes Arch. Klin. Exp. Ophthalmol. 211:139–144, 1979.

    Article  CAS  PubMed  Google Scholar 

  42. Reilly, E. L., C. Kondo, J. A. Brunberg, and D. B. Doty. Visual evoked potentials during hypothermia and prolonged circulatory arrest. Electroencephalogr. Clin. Neurophysiol. 45:100–106, 1978.

    Article  CAS  PubMed  Google Scholar 

  43. Reynolds, J. H., and L. Chelazzi. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27:611–647, 2004.

    Article  CAS  PubMed  Google Scholar 

  44. Schurmann, M., and E. Basar. Topography of alpha and theta responses upon auditory and visual sitmuli in humans. Biol. Cybern. 72:161–174, 2004.

    Article  Google Scholar 

  45. Sivakumar, R., B. Hema, P. Karir, and N. Nithyaklyani. Denosing of transient VEP signals using wavelet transform. J. Eng. Appl. Sci. 1:242–247, 2006.

    Google Scholar 

  46. Spehlmann, R. Evoked potential primer. In: Electrode Placements and Combinations for Full-Field and Half-Field VEPs. Stoneham, MA: Butterworth Publishers, 1985, pp. 103–109.

  47. Spehlmann, R. Evoked potential primer. In: The Transient VEP to Diffuse Light Simuli, edited by K. E. Misulis, and T. Fakhoury. Stoneham: Butterworth Publishers, 1985, pp. 135–142.

    Google Scholar 

  48. Spehlmann, R. Evoked potential primer. In: VEPs to Other Stimuli, edited by K. E. Misulis, and T. Fakhoury. Stoneham: Butterworth Publishers, 1985, pp. 144–158.

    Google Scholar 

  49. Strasburger, H., W. Wolfgang, and I. Rentschler. Amplitude and phase characteristics of the steady-state visual evoked potential. Appl. Opt. 27:1069–1088, 1988.

    Article  Google Scholar 

  50. Sutter, E. E. The brain response interface: communication through visually-induced electrical brain responses. J. Microcomput. Appl. 15:31–45, 1992.

    Article  Google Scholar 

  51. Sutter, E. E., and D. Tran. The field topography of ERG components in Man—I. The photopic luminance response. Vision Res. 32:433–446, 1992.

    Article  CAS  PubMed  Google Scholar 

  52. Tang, A. C., B. A. Pearlmutter, N. A. Malaszenko, and D. B. Phung. Independent components of magnetoencephalography: single-trial response onset times. Neuroimage 17:1773–1789, 2002.

    Article  PubMed  Google Scholar 

  53. Trejo, L. J., R. Rosipal, and B. Matthews. Brain–computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans. Neurol. Syst. Rehabil. 14:225–229, 2006.

    Article  Google Scholar 

  54. Trojaborg, W., and E. O. Jorgensen. Evoked cortical potentials in patients with “isoelectric” EEGs. Electroencephalogr. Clin. Neurophysiol. 35:301–309, 1973.

    Article  CAS  PubMed  Google Scholar 

  55. Uhl, R. R., K. C. Squires, D. L. Bruce, and A. Starr. Effect of halothane anesthesia on the human cortical visual evoked response. Anesthesiology 53:273–276, 1980.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Y., R. Wang, X. Gao, B. Hong, and X. Gao. A practical VEP-based brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14:234–239, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Wilson, W. B. Visual-evoked response differentiation of ischemic optic neuritis from the optic neuritis of multiple sclerosis. Am. J. Ophthal. 86:530–535, 1978.

    CAS  PubMed  Google Scholar 

  58. Wolpaw, J. R., N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. Brain–computer interface technology: a review of the first international meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 8:164–173, 2000.

    CAS  Google Scholar 

  59. Wolpaw, J. R., N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113:767–791, 2002.

    Article  PubMed  Google Scholar 

  60. Worden, M. S., J. J. Foxe, N. Wang, and G. V. Simpson. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63, 2000.

    CAS  PubMed  Google Scholar 

  61. Wu, C. H., P. L. Lee, Y. T. Wu, and J. C. Hsieh. ICA-based analysis of movement-related modulation on beta activity of single-trial MEG measurement using spatial and temporal templates. J. Med. Biol. Eng. 28:155–159, 2008.

    Google Scholar 

  62. Yamaguchi, S., H. Tsuchiya, and S. Kobayashi. Electroencephalographic activity associated with shifts of visuospatial attention. Brain 117:553–562, 1994.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Central University, National Science Council (95-2314-B-075-118, 96-2628-E-008-070-MY3, 96-2221-E-008-122-MY3, 96-2221-E-010-003-MY3, 96-2221-E-008-115-MY3, 96-2752-B-010-008-PAE), and Veterans General Hospital University System of Taiwan Joint Research Program (VGHUST96-P4-15, VGHUST97-P3-11, VGHUST98-P3-09, VGHUST99-P3-13). We thank Prof. Yu-Te Wu for his contribution in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Lei Lee.

Additional information

Associate Editor Berj L. Bardakjian oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, PL., Sie, JJ., Liu, YJ. et al. An SSVEP-Actuated Brain Computer Interface Using Phase-Tagged Flickering Sequences: A Cursor System. Ann Biomed Eng 38, 2383–2397 (2010). https://doi.org/10.1007/s10439-010-9964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9964-y

Keywords

Navigation