Skip to main content
Log in

Registration of Micro-Computed Tomography and Histological Images of the Guinea Pig Cochlea to Construct an Ear Model Using an Iterative Closest Point Algorithm

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a practical and systematic method to reconstruct accurate physical models of the guinea pig ear (n = 1). The method uses a semi-automatic technique to create three-dimensional (3-D) models of the guinea pig cochlea by registration of micro-computed tomography (CT) and histological images. An iterative closest point algorithm was employed to minimize the sum of square errors with respect to the closest histological model and corresponding micro-CT model. This allowed creation of an accurate geometric ear model including external ear canal, tympanic membrane, middle ear cavity, auditory ossicles, and the cochlea. The characteristic cross-sectional areas of scala tympani, scala vestibuli, and scala media were measured. The length, thickness, and apex width of the guinea pig’s basilar membrane were compared to the data found in literature. Some shape parameters were also compared among different species. The results confirmed that the geometric model created by this method was accurate. This method provides an effective way to visualize the 3-D structure and the detailed information about ear geometry required for finite element and multibody dynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5

Similar content being viewed by others

References

  1. Besl, P. J., and N. D. McKay. A method for registration of 3-D shapes. IEEE. Trans. Pat. Anal. Mach. Intel. 14(2):239–256, 1992.

    Article  Google Scholar 

  2. Blanz, V., and T. Vetter. A morphable model for the synthesis of 3D faces. In: Proceedings of SIGGRAPH ‘99, New York, NY: Addison-Wesley Publishing Co., pp. 187–194, 1999.

  3. Donahue, D., and R. Gussen. Rapid parlodion embedding of temporal bones. Arch. Otolaryngol. 83(1):28, 1996.

    Google Scholar 

  4. Dorman, M. F., P. C. Loizou, and D. Rainey. Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102(5):2993–2996, 1997.

    Article  CAS  PubMed  Google Scholar 

  5. Fernández, C. Dimensions of the cochlea (guinea pig). J. Acoust. Soc. Am. 24(5):519–523, 1952.

    Article  Google Scholar 

  6. Funnell, W. R., and C. Laszlo. Modeling of the cat eardrum as a thin shell using the finite-element method. J. Acoust. Soc. Am. 63(5):1461–1467, 1978.

    Article  CAS  PubMed  Google Scholar 

  7. Friedrich, S., Y. L. Cheng, and B. Saville. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann. Biomed. Eng. 25(2):303–314, 1997.

    Article  CAS  PubMed  Google Scholar 

  8. Gan, R. Z., B. P. Reeves, and X. Wang. Modeling of sound transmission from ear canal to cochlea. Ann. Biomed. Eng. 35(12):2180–2195, 2007.

    Article  PubMed  Google Scholar 

  9. Gan, R. Z., Q. Sun, B. Feng, and M. W. Wood. Acoustic-structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med. Eng. Phys. 28(5):395–404, 2006.

    Article  PubMed  Google Scholar 

  10. Holdsworth, D. W., M. Drangova, and A. Fenster. A high-resolution XRII-based quantitative volume CT scanner. Med. Phys. 20:449–462, 1993.

    Article  CAS  PubMed  Google Scholar 

  11. Hudde, H., and C. Weistenhöfer. A three-dimensional circuit model of the middle ear. Acta Acust United Acus 83:535–549, 1997.

    Google Scholar 

  12. Ketten, D. R., M. W. Skinner, G. Wang, M. W. Vannier, G. A. Gates, and J. G. Neely. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann. Otol. Rhinol. Laryngol. 107:1–16, 1998.

    Google Scholar 

  13. Koike, T., H. Wada, and T. Kobayashi. Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 111(3):1306–1317, 2002.

    Article  PubMed  Google Scholar 

  14. Kolston, P. J., and J. P. Ashmore. Finite element micromechanical modeling of the cochlea in three dimensions. J. Acoust. Soc. Am. 99(1):455–467, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Kringlebotn, M. Network model for the human middle ear. Scan. Audiol. 17(2):75–85, 1988.

    CAS  Google Scholar 

  16. Lee, C. F., J. H. Chen, Y. F. Chou, L. P. Hsu, P. R. Chen, and T. C. Liu. Optimal graft thickness for different sizes of tympanic membrane perforation in cartilage myringoplasty: a finite element analysis. Laryngoscope 117(4):725–730, 2007.

    Article  PubMed  Google Scholar 

  17. Lee, C. F., J. H. Chen, Y. F. Chou, and T. C. Liu. The optimal magnetic force for a novel actuator coupled to the tympanic membrane: a finite element analysis. Biomed. Eng. 19(3):171–177, 2007.

    Google Scholar 

  18. Lee, C. F., P. R. Chen, W. J. Lee, Y. F. Chou, J. H. Chen, and T. C. Liu. Computer aided modeling of human mastoid cavity biomechanics using finite element analysis. EURASIP. J. Adv. Sig. Proc., 2010 (in press).

  19. Lee, C. F., L. P. Hsu, P. R. Chen, Y. F. Chou, J. H. Chen, and T. C. Liu. Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis. Audiol. Neurotol. 11(6):380–388, 2006.

    Article  Google Scholar 

  20. Lee, S. C., H. K. Kim, I. K. Chun, M. H. Cho, S. Y. Lee, and M. H. Cho. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging. Phys. Med. Biol. 48(24):4173–4185, 2003.

    Article  PubMed  Google Scholar 

  21. Lee, C. F., C. H. Shih, J. F. Yu, J. H. Chen, Y. F. Chou, and T. C. Liu. A novel opto-electromagnetic actuator coupled to the tympanic membrane. J. Biomech. 41(16):3515–3518, 2008.

    Article  PubMed  Google Scholar 

  22. Lee-Tuck, J. P., P. M. Pinsky, C. R. Steele, and S. Puria. Finite element modeling of acousto-mechanical coupling in the cat middle ear. J. Acoust. Soc. Am. 124(1):328–362, 2008.

    Article  Google Scholar 

  23. Lim, D. J. Cochlear anatomy related to cochlear micromechanics: a review. J. Acoust. Soc. Am. 67(5):1686–1695, 1980.

    Article  CAS  PubMed  Google Scholar 

  24. Parthasarathi, A. A., K. Grosh, and A. L. Nuttall. Three-dimensional numerical modeling for global cochlear dynamics. J. Acoust. Soc. Am. 107(1):474–485, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Paulus, M. J., H. Sari-Sarraf, S. S. Gleason, M. Bobrek, J. S. Hicks, D. K. Johnson, J. K. Behel, L. H. Thompson, and W. C. Allen. A new X-ray computed tomography system for laboratory mouse imaging. IEEE Trans. Nucl. Sci. 46(3):546–558, 1999.

    Article  Google Scholar 

  26. Pitas, I. Digital Image Processing Algorithm. Upper saddle River, NJ: Prentice Hall, 1993.

    Google Scholar 

  27. Plontke, S. K., N. Siedow, R. Wegener, H. P. Zenner, and A. N. Salt. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model. Audiol. Neurotol. 12(1):37–48, 2007.

    Article  CAS  Google Scholar 

  28. Poznyakovskiy, A. A., T. Zahnert, Y. Kalaidzidis, R. Schmidt, B. Fischer, J. Baumgart, and Y. M. Yarin. The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res. 243:95–104, 2008.

    Article  PubMed  Google Scholar 

  29. Rossi, M., F. Casali, M. Bettuzzi, M. Morigi, D. Romani, S. V. Golovkin, and V. N. Govorum. An experimental micro-CT system for X-ray NDT. Proc. SPIE 4503:338–348, 2001.

    Article  Google Scholar 

  30. Sun, Q., K. H. Chang, K. J. Dormer, Jr., R. K. Dyer, and R. Z. Gan. An advanced computer-aided geometric modeling and fabrication method for human middle ear. Med. Eng. Phys. 24(9):595–606, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Takagi, A., and I. Sando. Computer-aided three-dimensional reconstruction: a method of measuring temporal bone structure including the length of the cochlea. Ann. Otol. Rhinol. Laryngol. 98:515–522, 1989.

    CAS  PubMed  Google Scholar 

  32. Tian, J., J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang. Multimodality molecular imaging. IEEE Eng. Med. Biol. Mag. 27(5):48–57, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Weissleder, R., and M. J. Pittet. Imaging in the era of molecular oncology. Nature 452(7187):580–589, 2008.

    Article  CAS  PubMed  Google Scholar 

  34. West, C. D. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J. Acoust. Soc. Am. 77:1091–1101, 1985.

    Article  CAS  PubMed  Google Scholar 

  35. Woods, R. E., and R. C. Gonzalez. Digital Image Processing (2nd ed.). Upper Saddle River, NJ: Prentice-Hall, 2002.

    Google Scholar 

Download references

Acknowledgments

We appreciate the contribution of the Neurobiology and Cognitive Science Center, National Taiwan University, in providing technical support of the dedicated small animal PET/CT scanner for imaging. This study was supported by grants from the National Science Council to C.F.L. (Grant no. NSC 98-2314-B-303003-MY3) and W.J.L. (Grant no. NSC 97-2314-B-002-150-MY2) and a grant from the Buddhist Tzu Chi General Hospital to C.F.L. (Grant nos. TCRD 9703 and 9704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuh-Shyang Chen or Tien-Chen Liu.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CF., Li, GJ., Wan, SY. et al. Registration of Micro-Computed Tomography and Histological Images of the Guinea Pig Cochlea to Construct an Ear Model Using an Iterative Closest Point Algorithm. Ann Biomed Eng 38, 1719–1727 (2010). https://doi.org/10.1007/s10439-010-9961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9961-1

Keywords

Navigation