Skip to main content
Log in

Demonstrating the Influence of Compression on Artery Wall Mass Transport

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The development of restenosis within the coronary arteries after a stenting procedure has been addressed with the development of the drug eluting stent device. However, in recent times the superiority of the drug eluting stent over bare metal stents has been brought into question. A lack of knowledge regarding the behavior of drug transport from the drug eluting devices contributes to this uncertainty. Questions arise as to whether drug eluting stents deliver sufficient amounts of therapeutic agents into the artery wall to suppress restenosis. Published investigations in this area have focused primarily on trends associated with how variations in stenting conditions affect mass transport behavior. However, experimentally validated numerical models that simulate mass transport within the artery wall are lacking. A novel experimental model was developed to validate computational predictions of species diffusion into a porous medium and an investigation into how stent strut compression influences mass transport was conducted. The study revealed that increased compressive forces on a porous media reduced the ability of species to diffuse through that media, and in relation to drug eluting stents will contribute to a reduction in therapeutic levels of drugs within the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ai, L., and K. Vafai. A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat Mass Transfer 49:1568–1591, 2006.

    Article  CAS  Google Scholar 

  2. Balakrishnan, B., J. F. Dooley, G. Kopia, and E. R. Edelman. Intravascular drug release kinetics dictate arterial drug deposition, retention and distribution. J. Controlled Release 123:100–108, 2007.

    Article  CAS  Google Scholar 

  3. Balakrishnan, B., J. F. Dooley, G. Kopia, and E. R. Edelman. Thrombus causes fluctuations in arterial drug delivery from intravascular stents. J. Controlled Release 131:173–180, 2008.

    Article  CAS  Google Scholar 

  4. Balakrishnan, B., A. R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers, and E. R. Edelman. Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents. Circulation 111:2958–2965, 2005.

    Article  PubMed  Google Scholar 

  5. Deng, X., Y. Marois, T. How, Y. Merhi, M. King, and R. Guidoin. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries. J. Vasc. Surg. 21:135–145, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Devereux, P. D. Mass Transport Disturbances in the Downstream Junction of Peripheral Bypass Grafts. Ph.D. thesis, University of Limerick, Limerick, Ireland, 2005.

  7. Finkelstein, A., D. McClean, S. Kar, K. Takizawa, K. Varghese, N. Baek, K. Park, M. C. Fishbein, R. Makkar, F. Litvack, and N. L. Eigler. Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation 107:1–8, 2003.

    Article  Google Scholar 

  8. Friedman, M. H. Principles and Models of Biological Transport. New York: Springer Science+Business Media, LLC, 39 pp., 273 pp., 2008.

  9. Head, D. E., J. J. Sebranek, C. Zahed, D. B. Coursin, and R. C. Prielipp. A tale of two stents: perioperative management of patients with drug-eluting coronary stents. J. Clin. Anesth. 19:386–396, 2007.

    Article  PubMed  Google Scholar 

  10. Hwang, C. W., D. Wu, and E. R. Edelman. Physiological transport forces govern drug distribution for stent based delivery. Circulation 104:600–605, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Jaschke, B., C. Michaelis, S. Milz, M. Vogeser, T. Mund, L. Hengst, A. Kastrati, A. Schömig, and R. Wessely. Local statin therapy differentially interferes with smooth muscle and endothelial cell proliferation and reduces neointima on a drug-eluting stent platform. Cardiovasc. Res. 68:483–492, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Karner, G., and K. Perktold. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study. J. Biomech. 33:709–715, 2000.

    Article  CAS  PubMed  Google Scholar 

  13. Kaul, S., P. Shah, and G. A. Diamond. As time goes by: current status and future directions in the controversy over stenting. J. Am. Coll. Cardiol. 50:128–137, 2007.

    Article  PubMed  Google Scholar 

  14. Lovich, M. A., C. Creel, K. Hong, C. Hwang, and E. R. Edelman. Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel. J. Pharmaceut. Sci. 90:1324–1335, 2001.

    Article  CAS  Google Scholar 

  15. Markou, C. P., E. M. Lutostansky, D. N. Ku, and S. R. Hanson. A novel method for efficient drug delivery. Ann. Biomed. Eng. 26:502–511, 1998.

    Article  CAS  PubMed  Google Scholar 

  16. McMahan, C. A., S. S. Gidding, and H. C. McGill. Coronary heart disease risk factors and atherosclerosis in young people. J. Clin. Lipidol. 2:118–126, 2008.

    Article  Google Scholar 

  17. Mongrain, R., I. Faik, R. Leask, J. Rodes-Cabau, E. Larose, and O. F. Bertrand. Effects of diffusion coefficients and strut apposition using numerical simulations for drug eluting coronary stents. J. Biomech. Eng. 129:733–742, 2007.

    Article  PubMed  Google Scholar 

  18. Mongrain, R., R. Leask, J. Brunette, I. Faik, N. Bulman-Feleming, and T. Nguyen. Numerical modeling of coronary drug eluting stents. Stud. Health Technol. Inform. 113:443–458, 2005.

    PubMed  Google Scholar 

  19. Mota, M., A. Yelshin, M. Fidaleo, and M. C. Flickinger. Modelling diffusivity in porous polymeric membranes with an intermediate layer containing microbial cells. Biochem. Eng. J. 37:285–293, 2007.

    Article  CAS  Google Scholar 

  20. National Vital Statistics Report, Vol. 50, p. 8, 2002.

  21. Pontrelli, G., and F. de Monte. Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int. J. Heat Mass Transfer 50:3658–3669, 2007.

    Article  CAS  Google Scholar 

  22. Stewart, S. F. C., and D. J. Lyman. Effects of an artery/vascular graft compliance mismatch on protein transport: a numerical study. Ann. Biomed. Eng. 32:991–1006, 2004.

    Article  PubMed  Google Scholar 

  23. Thom, T., N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z. J. Zheng, K. Flegal, C. O’Donnell, S. Kittner, D. Lloyd-Jones, D. C. Goff, Jr., Y. Hong, R. Adams, G. Friday, K. Furie, P. Gorelick, B. Kissela, J. Marler, J. Meigs, V. Roger, S. Sidney, P. Sorlie, J. Steinberger, S. Wasserthiel-Smoller, M. Wilson, and P. Wolf. Heart disease and stroke statistics—2006 update: a report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 113(6):e85–e151, 2006.

    Article  PubMed  Google Scholar 

  24. Truskey, G. A., W. L. Roberts, R. A. Herrmann, and R. A. Malinauskas. Measurement of endothelial permeability to 125I-low density lipoproteins in rabbit arteries by use of en face preperations. Circulation 71:883–897, 1992.

    CAS  Google Scholar 

  25. van der Hoeven, B. L., N. M. M. Pires, H. M. Warda, P. V. Oemrawsingh, B. J. M. Van Vlijmen, P. H. A. Quax, M. J. Schalij, E. E. Van der Wall, and J. W. Jukema. Drug eluting stents: results, problems and promises. Int. J. Cardiol. 99:9–17, 2004.

    Google Scholar 

  26. Wada, S., and T. Karino. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biomed. Eng. 30:778–779, 2002.

    Article  PubMed  Google Scholar 

  27. Waksman, R. Drug-eluting stents: from bench to bed. Cardiovasc. Radiat. Med. 3:226–241, 2002.

    Article  PubMed  Google Scholar 

  28. Wood, P. J. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 85:271–287, 1980.

    Article  CAS  Google Scholar 

  29. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:239–299, 1999.

    Article  Google Scholar 

  30. Yang, N., and K. Vafai. Modelling of low-density lipoprotein (LDL) transport in the artery-effects of hypertension. Int. J. Heat Mass Transfer 49:850–867, 2006.

    Article  CAS  Google Scholar 

  31. Zunino, P. Multidimensional pharmacokinetic models applied to the design of drug-eluting stents. Cardiovasc. Eng. 4:181–191, 2004.

    Article  Google Scholar 

  32. Zunino, P., C. D’Angelo, L. Petrini, C. Vergara, C. Capelli, and F. Migliavac. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput. Meth. Appl. Mech. Eng. 198:3633–3644, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Irish Research Council for Science, Engineering and Technology (IRCSET), grant no. RS/2005/159, for funding this body of work. The authors would also like to acknowledge the contribution made by W. Denny, G. Carroll and A. Piterina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Walsh.

Additional information

Associate Editor Stefan Jockenhoevel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connell, B.M., Walsh, M.T. Demonstrating the Influence of Compression on Artery Wall Mass Transport. Ann Biomed Eng 38, 1354–1366 (2010). https://doi.org/10.1007/s10439-010-9914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9914-8

Keywords

Navigation