Skip to main content
Log in

Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury due to External Rotation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent studies, using two different manners of foot constraint, potted and taped, document altered failure characteristics in the human cadaver ankle under controlled external rotation of the foot. The posterior talofibular ligament (PTaFL) was commonly injured when the foot was constrained in potting material, while the frequency of deltoid ligament injury was higher for the taped foot. In this study an existing multibody computational modeling approach was validated to include the influence of foot constraint, determine the kinematics of the joint under external foot rotation, and consequently obtain strains in various ligaments. It was hypothesized that the location of ankle injury due to excessive levels of external foot rotation is a function of foot constraint. The results from this model simulation supported this hypothesis and helped to explain the mechanisms of injury in the cadaver experiments. An excessive external foot rotation might generate a PTaFL injury for a rigid foot constraint, and an anterior deltoid ligament injury for a pliant foot constraint. The computational models may be further developed and modified to simulate the human response for different shoe designs, as well as on various athletic shoe–surface interfaces, so as to provide a computational basis for optimizing athletic performance with minimal injury risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bahr, R., F. Pena, J. Shine, W. D. Lew, and L. Engebretsen. Ligament force and joint motion in the intact ankle: a cadaveric study. Knee Surg. Sports Traumatol. Arthrosc. 6:115–121, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Beumer, A., W. van Hemert, B. Swierstra, L. Jasper, and S. M. Belkoff. A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Foot Ankle Int. 24:426–429, 2003.

    PubMed  Google Scholar 

  3. Boytim, M. J., D. A. Fischer, and L. Neumann. Syndesmotic ankle sprains. Am. J. Sports Med. 19(3):294–298, 1991.

    Article  CAS  PubMed  Google Scholar 

  4. Brosky, T., J. Nyland, A. Nitz, and D. N. Caborn. The ankle ligaments: consideration of syndesmotic injury and implications for rehabilitation. J. Orthop. Sports Phys. Ther. 21:197–205, 1995.

    CAS  PubMed  Google Scholar 

  5. Cheung, J., K. An, and M. Zhang. Consequences of partial and total plantar fascia release: a finite element study. Foot Ankle Int. 27:125–132, 2006.

    PubMed  Google Scholar 

  6. Colville, M. R., R. A. Marder, J. J. Boyle, and B. Zarins. Strain measurements in lateral ankle ligaments. Am. J. Sports Med. 18(2):196–200, 1990.

    Article  CAS  PubMed  Google Scholar 

  7. Ebraheim, N. A., H. Elgafy, and T. Padanilam. Syndesmotic disruption in low fibular fractures associated with deltoid ligament injury. Clin. Orthop. Relat. Res. 409:260–267, 2003.

    Article  PubMed  Google Scholar 

  8. Edwards, G. S., and J. C. DeLee. Ankle diastasis without fracture. Foot Ankle 4(6):305–312, 1984.

    PubMed  Google Scholar 

  9. Fritschy, D. An unusual ankle injury in top skiers. Am. J. Sports Med. 17:282–286, 1989.

    Article  CAS  PubMed  Google Scholar 

  10. Funk, J. R., G. W. Hall, J. R. Crandall, and W. D. Pilkey. Linear and quasi-linear viscoelastic characterization of ankle ligaments. ASME J. Biomech. Eng. 122:15–22, 2000.

    Article  CAS  Google Scholar 

  11. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. ASME J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  Google Scholar 

  12. Guise, E. R. Rotational ligamentous injuries to the ankle in football. Am. J. Sports Med. 4:1–6, 1976.

    Article  CAS  PubMed  Google Scholar 

  13. Hennig, E. M., and T. Sterzing. The influence of soccer shoe design on playing performance: a series of biomechanical studies. Footwear Sci. 2(1):3–11, 2010.

    Article  Google Scholar 

  14. Hopkinson, W. J., P. St. Pierre, J. B. Ryan, and J. H. Wheeler. Syndesmosis sprains of the ankle. Foot Ankle 10(6):325–330, 1990.

    CAS  PubMed  Google Scholar 

  15. Iaquinto, J. M., and J. S. Wayne. Computational model of the lower leg and foot/ankle complex: application to arch stability. J. Biomech. Eng. 132(2):021009, 2010.

    Article  PubMed  Google Scholar 

  16. Johnson, E. E., and K. L. Markolf. The contribution of the anterior talofibular ligament to ankle laxity. J. Bone Joint Surg. Am. 65(1):81–88, 1983.

    CAS  PubMed  Google Scholar 

  17. Kwak, S., L. Blankevoort, and G. Ateshian. A mathematical formulation for 3D quasi-static multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3:41–64, 2000.

    Article  Google Scholar 

  18. Lambert, K. L. The weight-bearing function of the fibula: a strain gauge study. J. Bone Joint Surg. Am. 53:507–513, 1971.

    CAS  PubMed  Google Scholar 

  19. Lassiter, T. E. Jr., T. R. Malone, and W. E. Garrett, Jr. Injury to the lateral ligaments of the ankle. Orthop. Clin. North Am. 20:629–640, 1989.

    PubMed  Google Scholar 

  20. Liacouras, P. C., and J. S. Wayne. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. ASME J. Biomech. Eng. 129:811–817, 2007.

    Article  Google Scholar 

  21. Lundberg, A., O. K. Svensson, C. Bylund, I. Goldie, and G. Selvik. Kinematics of the ankle/foot complex—part 2: pronation and supination. Foot Ankle 9(5):248–253, 1989.

    CAS  PubMed  Google Scholar 

  22. Lundberg, A., O. K. Svensson, C. Bylund, and G. Selvik. Kinematics of the ankle/foot complex—part 3: influence of leg rotation. Foot Ankle 9(6):304–309, 1989.

    CAS  PubMed  Google Scholar 

  23. Marieb, E. N., and J. Mallatt. Human Anatomy (3rd ed.). San Francisco, CA: Pearson Education, Inc., 2003.

    Google Scholar 

  24. Miller, C. D., W. R. Shelton, G. R. Barrett, F. H. Savoie, and A. D. Dukes. Deltoid and syndesmosis ligament injury of the ankle without fracture. Am. J. Sports Med. 23(6):746–750, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Netter, F. H., and J. T. Hansen. Atlas of Human Anatomy (3rd ed.). Teterboro, NJ: Icon Learning Systems, 2003.

    Google Scholar 

  26. Nilsson, S. Sprains of the lateral ankle ligaments, part II: epidemiological and clinical study with special reference to different forms of conservative treatment. J. Oslo City Hosp. 33(2–3):13–36, 1983.

    CAS  PubMed  Google Scholar 

  27. Norkus, S. A., and R. T. Floyd. The anatomy and mechanisms of syndesmotic ankle sprains. J. Athl. Train. 36(1):68–73, 2001.

    CAS  PubMed  Google Scholar 

  28. Pankovich, A. M. Maisonneuve fracture of the fibula. J. Bone Joint Surg. Am. 58:337–342, 1976.

    CAS  PubMed  Google Scholar 

  29. Pfaeffle, H., M. Tomaino, R. Grewal, J. Xu, N. Boardman, S. Woo, and J. Herndon. Tensile properties of the interosseous membrane of the human forearm. J. Orthop. Res. 14:842–845, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Rasmussen, O. Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments. Acta Orthop. Scand. 56(Suppl 211):1–75, 1985.

    Google Scholar 

  31. Rasmussen, O., I. Tovborg-Jensen, and S. Boe. Distal tibiofibular ligaments. Acta Orthop. Scand. 53:681–686, 1982.

    Article  CAS  PubMed  Google Scholar 

  32. Reggiani, B., A. Leardini, F. Corazza, and M. Taylor. Finite element analysis of a total ankle replacement during the stance phase of gait. J. Biomech. 39(8):1435–1443, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Sarrafian, S. K. Anatomy of the foot and ankle: descriptive, topographic, functional. Philadelphia, PA: JB Lippincott, pp. 143–198, 1983.

    Google Scholar 

  34. Shybut, G. T., W. Hayes, and A. A. White. Normal pattern of ligament loading among the lateral collateral ankle ligaments. Trans. Orthop. Res. Soc. 8:15, 1983.

    Google Scholar 

  35. Siegler, S., J. Block, and C. Schneck. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8:234–242, 1988.

    CAS  PubMed  Google Scholar 

  36. Soutas-Little, R. W., G. C. Beavis, M. C. Verstraete, and T. L. Markus. Analysis of foot motion during running using a joint coordinate system. Med. Sci. Sports Exerc. 19(3):285–293, 1987.

    CAS  PubMed  Google Scholar 

  37. Stiehl, J. B., D. A. Skrade, and R. P. Johnson. Experimentally produced ankle fractures in autopsy specimens. Clin. Orthop. Relat. Res. 285:244–249, 1992.

    PubMed  Google Scholar 

  38. Stormont, D. M., B. F. Morrey, K. N. An, and J. R. Cass. Stability of the loaded ankle. Relation between articular restrain and primary and secondary static restraints. Am. J. Sports Med. 13(5):295–300, 1985.

    Article  CAS  PubMed  Google Scholar 

  39. Taylor, D. C., and F. H. Bassett. Syndesmosis ankle sprains: diagnosing the injury and aiding recovery. Physician Sports Med. 21(12):39–46, 1993.

    Google Scholar 

  40. Turco, V. J. Injuries to the ankle and foot in athletics. Orthop. Clin. North Am. 8:669–682, 1977.

    CAS  PubMed  Google Scholar 

  41. Villwock, M. R. External rotation ankle injuries: investigating ligamentous rupture. In: Rotational Traction at the American Football Shoe–Surface Interface and Its Application to Ankle Injury, Chapter 4. Thesis for the degree of M.S. Michigan State University, 2009, pp. 56–79.

  42. Villwock, M. R., E. G. Meyer, J. W. Powell, and R. C. Haut. Football playing surface and shoe design affect rotational traction. Am. J. Sports Med. 37(3):518–525, 2009.

    Article  PubMed  Google Scholar 

  43. Wang, Q., M. Whittle, J. Cunningham, and J. Kenwright. Fibula and its ligaments in load transmission and ankle joint stability. Clin. Orthop. Relat. Res. 330:261–270, 1996.

    Article  PubMed  Google Scholar 

  44. Wei, F., M. R. Villwock, E. G. Meyer, J. W. Powell, and R. C. Haut. A biomechanical investigation of ankle injury under excessive external foot rotation in the human cadaver. J. Biomech. Eng. 132(9):091001, 2010.

    Article  PubMed  Google Scholar 

  45. Williams, G. N., M. H. Jones, and A. Amendola. Syndesmotic ankle sprains in athletes. Am. J. Sports Med. 35(7):1197–1207, 2007.

    Article  PubMed  Google Scholar 

  46. Xenos, J. S., W. J. Hopkinson, M. E. Mulligan, E. J. Olson, and N. A. Popovic. The tibiofibular syndesmosis: evaluation of the ligamentous structures, methods of fixation, and radiographic assessment. J. Bone Joint Surg. Am. 77:847–856, 1995.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jennifer S. Wayne for discussions on our modeling approach, Mr. Mark Villwock and Dr. Eric Meyer for help during the experimental ankle tests, Dr. Seungik Baek for providing the software MIMICS, and Mr. Clifford Beckett for technical assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Haut.

Additional information

Associate Editor Stefan Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, F., Hunley, S.C., Powell, J.W. et al. Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury due to External Rotation. Ann Biomed Eng 39, 756–765 (2011). https://doi.org/10.1007/s10439-010-0234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0234-9

Keywords

Navigation