Skip to main content

Advertisement

Log in

Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Clinical implementation of quantitative computed tomography-based finite element analysis (QCT/FEA) of proximal femur stiffness and strength to assess the likelihood of proximal femur (hip) fractures requires a unified modeling procedure, consistency in predicting bone mechanical properties, and validation with realistic test data that represent typical hip fractures, specifically, a sideways fall on the hip. We, therefore, used two sets (n = 9, each) of cadaveric femora with bone densities varying from normal to osteoporotic to build, refine, and validate a new class of QCT/FEA models for hip fracture under loading conditions that simulate a sideways fall on the hip. Convergence requirements of finite element models of the first set of femora led to the creation of a new meshing strategy and a robust process to model proximal femur geometry and material properties from QCT images. We used a second set of femora to cross-validate the model parameters derived from the first set. Refined models were validated experimentally by fracturing femora using specially designed fixtures, load cells, and high speed video capture. CT image reconstructions of fractured femora were created to classify the fractures. The predicted stiffness (cross-validation R 2 = 0.87), fracture load (cross-validation R 2 = 0.85), and fracture patterns (83% agreement) correlated well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.

    Article  PubMed  Google Scholar 

  2. Bessho, M., I. Ohnishi, T. Matsumoto, S. Ohashi, J. Matsuyama, K. Tobita, M. Kaneko, and K. Nakamura. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone 45:226–231, 2009.

    Article  PubMed  Google Scholar 

  3. Bessho, M., I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, and K. Nakamura. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40:1745–1753, 2007.

    Article  PubMed  Google Scholar 

  4. Bouxsein, M. L. Biomechanics of age-related fractures. In: Osteoporosis, 3rd edn, edited by R. Marcus, D. Feldman, D. A. Nelson, and C. J. Rosen. Boston: Elsevier, 2008, pp. 601–623.

    Chapter  Google Scholar 

  5. Cody, D. D., G. J. Gross, F. J. Hou, H. J. Spencer, S. A. Goldstein, and D. P. Fyhrie. Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32:1013–1020, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Courtney, A. C., E. F. Wachtel, E. R. Myers, and W. C. Hayes. Effects of loading rate on strength of the proximal femur. Calcif. Tissue Int. 55:53–58, 1994.

    Article  CAS  PubMed  Google Scholar 

  7. Courtney, A. C., E. F. Wachtel, E. R. Myers, and W. C. Hayes. Age-related reductions in the strength of the femur tested in a fall-loading configuration. J. Bone Joint Surg. Am. 77:387–395, 1995.

    CAS  PubMed  Google Scholar 

  8. Cummings, S. R., and L. J. Melton. Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767, 2002.

    Article  PubMed  Google Scholar 

  9. Dalle Carbonare, L., and S. Giannini. Bone microarchitecture as an important determinant of bone strength. J. Endocrinol. Invest. 27:99–105, 2004.

    CAS  PubMed  Google Scholar 

  10. Dawson-Hughes, B., R. Lindsay, S. Khosla, L. J. Melton, A. N. A. Tosteson, M. Favus, and S. Baim. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation, 2008.

    Google Scholar 

  11. de Bakker, P. M., S. L. Manske, V. Ebacher, T. R. Oxland, P. A. Cripton, and P. Guy. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures. J. Biomech. 42:1917–1925, 2009.

    Article  PubMed  Google Scholar 

  12. Genant, H. K., C. Gordon, Y. Jiang, T. F. Lang, T. M. Link, and S. Majumdar. Advanced imaging of bone macro and micro structure. Bone 25:149–152, 1999.

    Article  CAS  PubMed  Google Scholar 

  13. Goulet, R. W., S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27:375–389, 1994.

    Article  CAS  PubMed  Google Scholar 

  14. Heini, P. F., T. Franz, C. Fankhauser, B. Gasser, and R. Ganz. Femoroplasty augmentation of mechanical properties in the osteoporotic proximal femurs: a biomechanical investigation of PMMA reinforcement in cadaver bones. Clin. Biomech. 19:506–512, 2004.

    Article  Google Scholar 

  15. Kanis, J. A., E. V. McCloskey, H. Johansson, A. Oden, L. J. Melton, and N. Khaltaev. A reference standard for the description of osteoporosis. Bone 42:467–475, 2008.

    Article  CAS  PubMed  Google Scholar 

  16. Keyak, J. H. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med. Eng. Phys. 23:165–173, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Keyak, J. H., I. Y. Lee, and H. B. Skinner. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J. Biomed. Mater. Res. 28:1329–1336, 1994.

    Article  CAS  PubMed  Google Scholar 

  18. Keyak, J. H., S. A. Rossi, K. A. Jones, C. M. Les, and H. B. Skinner. Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23:657–664, 2001.

    Article  CAS  PubMed  Google Scholar 

  19. Keyak, J. H., S. A. Rossi, K. A. Jones, and H. B. Skinner. Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31:125–133, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Langton, C. M., S. Pisharody, and J. H. Keyak. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur. Med. Eng. Phys. 31:668–672, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Fracture prediction for the proximal femur using finite element models. Part I. Linear analysis. J. Biomech. Eng. 113:353–360, 1991.

    Article  CAS  PubMed  Google Scholar 

  22. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos. Int. 5:252–261, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. McCreadie, B. R., and S. A. Goldstein. Biomechanics of fracture: is bone mineral density sufficient to assess risk? J. Bone Miner. Res. 15:2305–2308, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Morgan, E. F., H. H. Bayraktar, and T. M. Keaveny. Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 36:897–904, 2003.

    Article  PubMed  Google Scholar 

  25. Morgan, E. F., H. H. Bayraktar, O. C. Yeh, S. Majumdar, A. Burghardt, and T. M. Keaveny. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J. Biomech. 37:1413–1420, 2004.

    Article  PubMed  Google Scholar 

  26. Orwoll, E. S., L. M. Marshall, C. M. Nielson, S. R. Cummings, J. Lapidus, J. A. Cauley, K. Ensrud, N. Lane, P. R. Hoffmann, D. L. Kopperdahl, and T. M. Keaveny. Finite element analysis of the proximal femur and hip fracture risk in older men. J. Bone Miner. Res. 24:475–483, 2009.

    Article  PubMed  Google Scholar 

  27. Pors Nielsen, S. The fallacy of BMD: a critical review of the diagnostic use of dual X-ray absorptiometry. Clin. Rheumatol. 19:174–183, 2000.

    Article  Google Scholar 

  28. Schileo, E., F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti. Subject-specific finite element models can accurately predict strain levels in long bones. J. Biomech. 40:2982–2989, 2007.

    Article  PubMed  Google Scholar 

  29. Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87:245–251, 1980.

    Article  Google Scholar 

  30. Suzuki, S., T. Yamamuro, H. Okumura, and I. Yamamoto. Quantitative computed tomography: comparative study using different scanners with two calibration phantoms. Br. J. Radiol. 64:1001–1006, 1991.

    Article  CAS  PubMed  Google Scholar 

  31. Taddei, F., L. Cristofolini, S. Martelli, H. S. Gill, and M. Viceconti. Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J. Biomech. 39:2457–2467, 2006.

    Article  PubMed  Google Scholar 

  32. U.S. Department of Health and Human Services, and Office of the Surgeon General. Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: U.S. Department of Health and Human Services, p. 436, 2004.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mark Bolander, Jim Bronk, Vincent Lambert, Dr. Xiaoliang Qin, Alexander Cong, Mike Burke, Brant Newman, Larry Berglund, Dr. Jodie Christner, Dr. Cynthia McCollough, and Elizabeth Atkinson for their valuable contributions to this study. This study was financially supported by the Grainger Foundation: Grainger Innovation Fund and NIH grant AR027065Z-30S1. The authors thank the Musculoskeletal Transplant Foundation for providing the specimens, and the Opus CT Imaging Resource of Mayo Clinic (NIH construction grant RR018898) for CT imaging of the femora.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Dragomir-Daescu or Jorn Op Den Buijs.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragomir-Daescu, D., Op Den Buijs, J., McEligot, S. et al. Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip. Ann Biomed Eng 39, 742–755 (2011). https://doi.org/10.1007/s10439-010-0196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0196-y

Keywords

Navigation