Skip to main content

Advertisement

Log in

Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Remodeling of vaginal extracellular matrix and smooth muscle likely plays a critical role in reducing the risk of maternal injury during vaginal delivery by altering the mechanical properties to increase distension and reduce stress. Long-Evans rats were divided into five groups to examine the passive mechanical and active contractile properties throughout pregnancy and postpartum: virgin (n = 17), mid-pregnant (Day 14–16, n = 12), late-pregnant (Day 20–22, n = 14), immediate postpartum (0–2 h after delivery, n = 14), and 4 week postpartum (n = 15). Longitudinal sections of vaginal tissue were loaded to failure uniaxially for passive mechanical or active contractile properties were examined. For passive mechanics, the tangent modulus decreased 45% by mid-pregnancy and immediately postpartum (p < 0.001). The ultimate strain continuously increased up to 43% higher than virgin animals (p = 0.007) in the immediate postpartum group. For active mechanics, the maximal contractile force was 36–56% lower through immediate postpartum animals, and was significantly more sensitive to K+ throughout pregnancy and postpartum (p = 0.003). The changes observed in the passive and active properties of the rat vagina are consistent with what would be expected from a tissue that is remodeling to maximize its ability to distend at the time of vaginal delivery to facilitate passage of the fetus with minimal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abramowitch, S. D., S. L.-Y. Woo, T. D. Clineff, and R. E. Debski. An evaluation of the quasi-linear viscoelastic properties of the healing medial collateral ligament in a goat model. Ann. Biomed. Eng. 32(3):329–335, 2004.

    Article  PubMed  Google Scholar 

  2. Abramowitch, S. D., A. Feola, Z. Jallah, and P. A. Moalli. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl 1):S146–S158, 2009.

    Article  PubMed  Google Scholar 

  3. Alperin, M., A. Feola, R. Duerr, P. Moalli, and S. Abramowitch. Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum. Int. Urogynecol. J. Pelvic Floor Dysfunct. 21(9):1169–1174, 2010.

    Article  PubMed  Google Scholar 

  4. Damaser, M. S., C. Whitbeck, P. Chichester, and R. M. Levin. Effect of vaginal distension on blood flow and hypoxia of urogenital organs of the female rat. J. Appl. Physiol. 98(5):1884–1890, 2005.

    Article  CAS  PubMed  Google Scholar 

  5. Daucher, J. A., K. A. Clark, D. B. Stolz, L. A. Meyn, and P. A. Moalli. Adaptations of the rat vagina in pregnancy to accommodate delivery. Obstet. Gynecol. 109(1):128–135, 2007.

    Article  PubMed  Google Scholar 

  6. Davidge, S. T., R. E. Gandley, and M. K. McLaughlin. Altered active but not passive properties of mesenteric resistance arteries from the vitamin E-deprived rat. J. Pharm. 123(2):275–280, 1998.

    CAS  Google Scholar 

  7. DeLancey, J. O. Anatomic aspects of vaginal eversion after hysterectomy. Am. J. Obstet. Gynecol. 166(6 Pt 1):1717–1724, 1992; discussion 1724-8.

    CAS  PubMed  Google Scholar 

  8. DeLancey, J. O. The hidden epidemic of pelvic floor dysfunction: achievable goals for improved prevention and treatment. Am. J. Obstet. Gynecol. 192(5):1488–1495, 2005.

    Article  PubMed  Google Scholar 

  9. Drutz, H. P., and M. Alarab. Pelvic organ prolapse: demographics and future growth prospects. Int. Urogynecol. J Pelvic Floor Dysfunct. 17(Suppl 1):S6–S9, 2006.

    PubMed  Google Scholar 

  10. Giraldi, A., P. Alm, V. Werkstrom, L. Myllymaki, G. Wagner, and K. E. Andersson. Morphological and functional characterization of a rat vaginal smooth muscle sphincter. Int. J. Impot. Res. 14(4):271–282, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Gregorevic, P., D. R. Plant, N. Stupka, and G. S. Lynch. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration. J. Physiol. 558(2):549–560, 2004.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, N. N., K. Min, M. A. Pessina, R. Munarriz, I. Goldstein, and A. M. Traish. Effects of ovariectomy and steroid hormones on vaginal smooth muscle contractility. Int. J. Impot. Res. 16(1):43–50, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. Lowder, J. L., K. M. Debes, D. K. Moon, N. Howden, S. D. Abramowitch, and P. A. Moalli. Biomechanical adaptations of the rat vagina and supportive tissues in pregnancy to accommodate delivery. Obstet. Gynecol. 109(1):136–143, 2007.

    Article  PubMed  Google Scholar 

  14. Mant, J., R. Painter, and M. Vessey. Epidemiology of genital prolapse: observations from the Oxford Family Planning Association Study. Br. J. Obstet. Gynaecol. 104(5):579–585, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Moalli, P. A., N. S. Howden, J. L. Lowder, J. Navarro, K. M. Debes, S. D. Abramowitch, and S. L.-Y. Woo. A rat model to study the structural properties of the vagina and its supportive tissues. Am. J. Obstet. Gynecol. 192(1):80–88, 2005.

    Article  PubMed  Google Scholar 

  16. Olsen, A. L., V. J. Smith, J. O. Bergstrom, J. C. Colling, and A. L. Clark. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet. Gynecol. 89(4):501–506, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Pan, H. Q., J. M. Kerns, D. L. Lin, D. Sypert, J. Steward, C. R. V. Hoover, P. Zaszczurynski, R. S. Butler, and M. S. Damaser. Dual simulated childbirth injury delays anatomic recovery. Am. J. Physiol. Renal Physiol. 296(2):F277–F283, 2009.

    Article  CAS  PubMed  Google Scholar 

  18. Rubod, C., M. Boukerrou, M. Brieu, P. Dubois, and M. Cosson. Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J. Urol. 178(1):320–325, 2007; discussion 325.

    Article  PubMed  Google Scholar 

  19. Scheffler, S. U., T. D. Clineff, C. D. Papageorgiou, R. E. Debski, C. B. Ma, and S. L.-Y. Woo. Structure and function of the healing medial collateral ligament in a goat model. Ann. Biomed. Eng. 29(2):173–180, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Subak, L. L., L. E. Waetjen, S. Va Den Eeden, D. H. Vittinghoff, and J. S. Brown. Cost of pelvic organ prolapse surgery in the United States. Obstet. Gynecol. 98(4):646–651, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Wen, Y., Y. Y. Zhao, S. Li, M. L. Polan, and B. H. Chen. Differences in mRNA and protein expression of small proteoglycans in vaginal wall tissue from women with and without stress urinary incontinence. Hum. Reprod. 22(6):1718–1724, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Woo, S. L.-Y., C. A. Orlando, J. F. Camp, and W. H. Akeson. Effects of postmortem storage by freezing on ligament tensile behavior. J. Biomech. 19(5):399–404, 1986.

    Article  CAS  PubMed  Google Scholar 

  23. Woo, S. L.-Y., M. I. Danto, K. J. Ohland, T. Q. Lee, and P. O. Newton. The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J. Biomech. Eng. 112(4):426–431, 1990.

    Article  CAS  PubMed  Google Scholar 

  24. Yanagishita, M. Proteoglycans and hyaluronan in female reproductive organs. EXS 70:179–190, 1994.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research received financial support from the NIH R01HD-045590 and K12HD-043441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Abramowitch.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feola, A., Moalli, P., Alperin, M. et al. Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina. Ann Biomed Eng 39, 549–558 (2011). https://doi.org/10.1007/s10439-010-0153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0153-9

Keywords

Navigation