Skip to main content
Log in

Optoelectronic Stimulation of the Brain Using Carbon Nanotubes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the simulation results of a novel technique to stimulate the brain using a carbon nanotubes (CNT) based optically activated stimulator. This technique could be a promising alternative solution to overcome the limitations occurring in the conventional electrical stimulation of the brain and the newly developed opto-genetic stimulation. In this technique, the CNT stimulator, which generated an electrical current when exposed to light, was implanted in the brain. This current stimulated the nearby neurons to generate an action potential. The simulation results illustrated that a single-wall carbon nanotube of 50 nm2 size could stimulate a 40 μm2 area of the brain, whereas a multiwall carbon nanotube could cover a 12 μm2 area of the brain. Additionally, simulations were also performed to determine the optimal shape and appropriate coating material for commercial optical stimulators to maximize the stimulation efficacy in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Adamantidis, A. R., F. Zhang, A. M. Aravanis, K. Deisseroth, and L. D. Lecea. Neural substrates of awakening probed with opto-genetic control of hypocretin neurons. Nature 45(15):420–424, 2007.

    Article  Google Scholar 

  2. Agnew, W. F., T. G. H. Yuen, D. B. Mccreery, and L. A. Bullara. Histopathologic evaluation of prolonged intracortical electrical stimulation. Exp. Neurol. 90(1):162–185, 1986.

    Article  Google Scholar 

  3. Atasoy, D., Y. Aponte, H. H. Su, and S. M. Sternson. A flex switch targets channelrhodopsin-2 to multiple cell types for imaging and long-rage circuit mapping. J. Neurosci. 22(28):7025–7030, 2008.

    Article  Google Scholar 

  4. Burke, P. J. An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2(1):55–58, 1990.

    Article  Google Scholar 

  5. Culver, J. P., T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh. Diffuse optical tomography of cerebral blood flow oxygenation and metabolism in rat during focal ischemia. J. Cereb. Blood Flow Metab. 23:911–924, 2003.

    Article  PubMed  Google Scholar 

  6. Elwassif, M. M., Q. Kong, M. Vazquez, and M. Bikson. Bio-heat transfer model of deep brain stimulation induced temperature changes. J. Neural Eng. 3:306–315, 2006.

    Article  PubMed  Google Scholar 

  7. Enderle, J. D., S. M. Blanchard, and J. D. Bronzino. Introduction to Biomedical Engineering. Elsevier Academic Press, 2005.

  8. Franzini, A., P. Ferroli, I. Dones, C. Marras, and G. Broggi. Chronic motor cortex stimulation for movement disorders: a promising perspective. Neurol. Res. 25(2):123–126, 2003.

    Article  PubMed  Google Scholar 

  9. Freitag, M., Y. Martin, J. A. Misewich, R. Martel, and P. Avouris. Photoconductivity of single carbon nanotube. Nano Lett. 3(8):1067–1071, 2003.

    Article  CAS  Google Scholar 

  10. Harrison, R. R., P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, and B. Greger. A low power integrated circuit for a wireless 100-electrodes neural recording system. IEEE J. Solid State Circuit. 42(1):123–133, 2007.

    Article  Google Scholar 

  11. Hausser, M., and S. L. Smith. Controlling neural circuits with. Nat. Neurosci. 466(5):617–619, 2007.

    Google Scholar 

  12. Histed, M. H., V. Bonin, and R. C. Reid. Direct activation of sparse, distributed population of cortical neurons by electrical microstimulation. Neuron 63(4):508–522, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application and excitation in nerve. Bull. Math. Biol. 52(1):25–71, 1990.

    CAS  PubMed  Google Scholar 

  14. http://www.copingskills4kids.net/amazing-brain-facts, available at March, 2010

  15. Lebedev, M. A., and M. A. L. Nicolelis. Brain machine interfaces: past, present and future. Trends Neurosci. 29(9):536–546, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Lovat, V., C. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini. Carbon nanotube boost neural electrical signaling. Nano Lett. 5(6):1107–1110, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Park, S. I., K. H. Oh, Y. S. Hwang, S. J. Kim, and J. W. Chang. Electrical stimulation of the anterior cingulate cortex in a rat neuropathic pain model. Acta Neurochir. Suppl. 99:65–71, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Polikov, V. S., P. A. Tresco, and W. M. Reichert. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Method 148:1–18, 2005.

    Article  Google Scholar 

  19. Pronichev, I. V., and D. N. Lenkov. Functional mapping of the motor cortex of the white mouse by a microstimulation method. Neurosci. Behav. Physiol. 28(1):80–85, 1998.

    Article  CAS  PubMed  Google Scholar 

  20. Qiu, X., M. Freitage, V. Perebeinos, and P. Avouris. Photoconductivity spectra of single carbon nanotube implication on the nature of their excited state. Nano Lett. 5(4):749–752, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Serra, A., D. Manno, E. Filippo, A. Tepore, M. L. Terranova, S. Orlanducci, and M. Rossi. Photoconductivity of packed homo type bundles formed by aligned single wall carbon nanotube. Nano Lett. 8(3):968–971, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Smart, S. K., A. I. Cassadya, and D. J. Martin. The biocompatibility of carbon nanotube. Carbon 44(6):1034–1047, 2006.

    Article  CAS  Google Scholar 

  23. Wang, K., H. A. Fishman, H. Dai, and J. S. Harris. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9):2043–2048, 2006.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, L., S. L. Jacques, and L. Aheng. Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Progr. Biomed. 47(2):131–146, 1995.

    Article  CAS  Google Scholar 

  25. Webster, T. J., M. C. Waid, J. L. Mckenzie, R. L. Price, and J. U. Ejiofor. Nano-biotechnology: carbon nanofibers as improved neural and orthopedic implants. Nanotechnology 4:48–54, 2004.

    Article  Google Scholar 

  26. Wei, J., J. Sun, J. Zhu, K. Wang, Z. Wang, J. Luo, D. Wu, and A. Cao. Carbon nanotube macro bundles for light sensing. Communications 2(8):988–993, 2006.

    CAS  Google Scholar 

  27. http://www.scientificamerican.com/article.cfm?id=neural-light-show, available at March, 2010.

  28. Zhou, Y., S. Serrkala, P. M. Ajauan, and S. K. Nayak. Resistance of copper nanowire and comparison with carbon nanotube bundles for interconnect applications using first principles calculations. J. Phys. Condens. Matter. 20:95209–95213, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grand no. 10031779 from the Strategic Technology Development Program of Ministry of Knowledge Economy. Also, this work was supported by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Anti-aging and Well-being Research Center). This work was supported by the Brain Korea 21 Project. This work was also supported by grant of the Oriental Medicine R&D Project, Ministry of Health, Welfare and Family Affairs, Republic of Korea (B080033), the Korean Science and Engineering Foundation (R01-2007-000-2056-0), the Korean Research Foundation, Next generation leading tech. grant (Daegu, EQMed).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Cho.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohy-Ud-Din, Z., Woo, S.H., Kim, J.H. et al. Optoelectronic Stimulation of the Brain Using Carbon Nanotubes. Ann Biomed Eng 38, 3500–3508 (2010). https://doi.org/10.1007/s10439-010-0091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0091-6

Keywords

Navigation