Skip to main content
Log in

Detection Performance and Risk Stratification Using a Model-Based Shape Index Characterizing Heart Rate Turbulence

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A detection–theoretic approach to quantify heart rate turbulence (HRT) following a ventricular premature beat is proposed and validated using an extended integral pulse frequency modulation (IPFM) model which accounts for HRT. The modulating signal of the extended IPFM model is projected into a three-dimensional subspace spanned by the Karhunen–Loève basis functions, characterizing HRT shape. The presence or absence of HRT is decided by means of a likelihood ratio test, the Neyman–Pearson detector, resulting in a quadratic detection statistic. Using a labeled dataset built from different interbeat interval series, detection performance is assessed and found to outperform the two widely used indices: turbulence onset (TO) and turbulence slope (TS). The ability of the proposed method to predict the risk of cardiac death is evaluated in a population of patients (n = 90) with ischemic cardiomyopathy and mild-to-moderate congestive heart failure. While both TS and the novel HRT index differ significantly in survivors and cardiac death patients, mortality analysis shows that the latter index exhibits much stronger association with risk of cardiac death (hazard ratio = 2.8, CI = 1.32–5.97, p = 0.008). It is also shown that the model-based shape indices, but not TO and TS, remain predictive of cardiac death in our population when computed from 4-h instead of 24-h ambulatory ECGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Barthel, P., R. Schneider, A. Bauer, K. Ulm, C. Schmitt, A. Schömig, and G. Schmidt. Risk stratification after acute myocardial infarction by heart rate turbulence. Circulation 108(10):1221–1226, 2003. doi:10.1161/01.CIR.0000088783.34082.89.

    Article  PubMed  Google Scholar 

  2. Bauer, A., M. Malik, P. Barthel, R. Schneider, M. A. Watanabe, A. J. Camm, A. Schömig, and G. Schmidt. Turbulence dynamics: an independent predictor of late mortality after acute myocardial infarction. Int. J. Cardiol. 107(1):42–47, 2006. doi:10.1016/j.ijcard.2005.02.037.

    Article  PubMed  Google Scholar 

  3. Bauer, A., M. Malik, G. Schmidt, P. Barthel, H. Bonnemeier, I. Cygankiewicz, P. Guzik, F. Lombardi, A. Mnller, A. Oto, R. Schneider, M. Watanabe, D. Wichterle, and W. Zareba. Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use: International Society for Holter and Noninvasive Electrophysiology consensus. J. Am. Coll. Cardiol. 52(17):1353–1365, 2008. doi:10.1016/j.jacc.2008.07.041.

    Article  PubMed  Google Scholar 

  4. Cygankiewicz, I., W. Zareba, R. Vazquez, M. Vallverdú, J. R. Gonzalez-Juanatey, M. Valdes, J. Almendral, J. Cinca, P. Caminal, A. Bayés de Luna, and M. S. Insuficiencia Cardiaca Investigators. Heart rate turbulence predicts all-cause mortality and sudden death in congestive heart failure patients. Heart Rhythm 5(8):1095–1102, 2008. doi: 10.1016/j.hrthm.2008.04.017

  5. Exner, D. V., K. M. Kavanagh, M. P. Slawnych, L. B. Mitchell, D. Ramadan, S. G. Aggarwal, C. Noullett, A. V. Schaik, R. T. Mitchell, M. A. Shibata, S. Gulamhussein, J. McMeekin, W. Tymchak, G. Schnell, A. M. Gillis, R. S. Sheldon, G. H. Fick, H. J. Duff, and Investigators, R.E.F.I.N.E. Noninvasive risk assessment early after a myocardial infarction the REFINE study. J. Am. Coll. Cardiol. 50(24):2275–2284, 2007.

    Article  PubMed  Google Scholar 

  6. Ghuran, A., F. Reid, M. T. L. Rovere, G. Schmidt, J. T. Bigger, A. J. Camm, P. J. Schwartz, M. Malik, and Investigators, A.T.R.A.M.I. Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest (the autonomic tone and reflexes after myocardial infarction substudy). Am. J. Cardiol. 89(2):184–190, 2002.

    Article  PubMed  Google Scholar 

  7. Hallstrom, A. P., P. K. Stein, R. Schneider, M. Hodges, G. Schmidt, and K. Ulm. Structural relationships between measures based on heart beat intervals: potential for improved risk assessment. IEEE Trans. Biomed. Eng. 51(8):1414–1420, 2004. doi:10.1109/TBME.2004.828049

    Article  PubMed  Google Scholar 

  8. Jager, F., A. Taddei, G. B. Moody, M. Emdin, G. Antolic, R. Dorn, A. Smrdel, C. Marchesi, and R. G. Mark. Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41(2):172–183, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. Kay, S. M.: Fundamentals of Statistical Signal Processing. Detection theory. Upper Saddle River: Prentice Hall, 1993.

    Google Scholar 

  10. Lin, L. Y., L. P. Lai, J. L. Lin, C. C. Du, W. Y. Shau, H. L. Chan, Y. Z. Tseng, and S. K. S. Huang. Tight mechanism correlation between heart rate turbulence and baroreflex sensitivity: sequential autonomic blockade analysis. J. Cardiovasc. Electrophysiol. 13(5):427–431, 2002.

    Article  PubMed  Google Scholar 

  11. Marine, J. E., M. A. Watanabe, T. W. Smith, and K. M. Monahan. Effect of atropine on heart rate turbulence. Am. J. Cardiol. 89(6):767–769, 2002.

    Article  PubMed  Google Scholar 

  12. Mäkikallio, T. H., P. Barthel, R. Schneider, A. Bauer, J. M. Tapanainen, M. P. Tulppo, G. Schmidt, and H. V. Huikuri. Prediction of sudden cardiac death after acute myocardial infarction: role of Holter monitoring in the modern treatment era. Eur. Heart J. 26(8):762–769, 2005. doi:10.1093/eurheartj/ehi188

    Google Scholar 

  13. Moore, R. K. G., D. G. Groves, P. E. Barlow, K. A. A. Fox, A. Shah, J. Nolan, and M. T. Kearney. Heart rate turbulence and death due to cardiac decompensation in patients with chronic heart failure. Eur. J. Heart Fail. 8(6):585–590, 2006. doi:10.1016/j.ejheart.2005.11.012

    Google Scholar 

  14. Schmidt, G., M. Malik, P. Barthel, R. Schneider, K. Ulm, L. Rolnitzky, A. J. Camm, J. T. Bigger, and A. Schömig. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 353:1390–1396, 1999.

    Article  CAS  PubMed  Google Scholar 

  15. Schneider, R., P. Barthel, and M. Watanabe. Heart rate turbulence on Holter. In: Dynamic Electrocardiography, edited by M. Malik, and A. J. Camm. New York: Blackwell Futura, 2004, pp. 190–193.

  16. Segerson, N. M., S. L. Wasmund, M. Abedin, R. K. Pai, M. Daccarett, N. Akoum, T. S. Wall, R. C. Klein, R. A. Freedman, and M. H. Hamdan. Heart rate turbulence parameters correlate with post-premature ventricular contraction changes in muscle sympathetic activity. Heart Rhythm 4(3):284–289, 2007. doi:10.1016/j.hrthm.2006.10.020

    Google Scholar 

  17. Smith, D., K. Solem, P. Laguna, J. P. Martínez, and L. Sörnmo. Model-based detection of heart rate turbulence using mean shape information. IEEE Trans. Biomed. Eng. 57(2):334–342, 2010.

    Article  PubMed  Google Scholar 

  18. Solem, K., P. Laguna, J. P. Martínez, and L. Sörnmo. Model-based detection of heart rate turbulence. IEEE Trans. Biomed. Eng. 55(12):2711–2722, 2008.

    Article  Google Scholar 

  19. Watanabe, M. A. Heart rate turbulence: a review. Indian Pacing Electrophysiol. J. 3(1):10–22, 2003.

    PubMed  Google Scholar 

  20. Wichterle, D., V. Melenovsky, J. Simek, J. Malik, and M. Malik. Hemodynamics and autonomic control of heart rate turbulence. J. Cardiovasc. Electrophysiol. 17(3):286–291, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Projects TEC-2007-68076-C02-02 from CICYT, GTC T-30 from DGA (Spain), CIBER de Bioingeniería, Biomateriales y Nanomedicina, an initiative of the Instituto de Salud Carlos III, and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Martínez.

Additional information

Associate Editor Ioannis A. Kakadiaris oversaw the review of this article.

Appendix

Appendix

The model parameters \({\varvec{\mu}}, {\varvec{\Sigma}}_0,\) and \({\varvec{\Sigma}}_1,\) estimated from datasets \({{\mathcal{S}}}_{0{\text{tr}}}\) and \({{\mathcal{S}}}_{1{\text{tr}}},\) and used for computing \(T_{\varvec{\mu}}({{\mathbf{x}}})\) and \(T_{\varvec{\Sigma}}({{\mathbf{x}}})\) have the following values:

$$ {\varvec{\mu}} = 10^{-3} \left[ \begin{array}{lll} -34.699 & 107.246 & 0.112 \end{array}\right]^{\text{T}} $$
(8)
$$ {\varvec{\Sigma}}_0 = 10^{-3} \left[ \begin{array}{rrr} 8.061& 0.932&-0.368 \\ 0.932 & 1.442& 0.330\\ -0.368 & 0.330& 1.103 \end{array}\right] $$
(9)
$$ {\varvec{\Sigma}}_1 = 10^{-3} \left[ \begin{array}{rrr} 32.262 & 3.726&0.004\\ 3.726 & 6.603 & -0.012 \\ 0.004 & -0.012 & 5.454 \end{array}\right] $$
(10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, J.P., Cygankiewicz, I., Smith, D. et al. Detection Performance and Risk Stratification Using a Model-Based Shape Index Characterizing Heart Rate Turbulence. Ann Biomed Eng 38, 3173–3184 (2010). https://doi.org/10.1007/s10439-010-0081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0081-8

Keywords

Navigation