Skip to main content
Log in

Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow

Left-Ventricular Fluid Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian–Eulerian formulation (ALE) of the Navier–Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid–structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Cheng, Y., H. Oertel, and T. Schenkel. Fluid-structure coupled 3D CFD simulation of the left ventricular flow during filling phase. Ann. Biomed. Eng. 33(5):567–576, 2005.

    Article  PubMed  Google Scholar 

  2. Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.

    Article  Google Scholar 

  3. Griffith, B. E., R. D. Hornung, D. M. McQueen, and C. S. Peskin. An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223:10–49, 2007.

    Article  Google Scholar 

  4. Hunter, P. J., A. J. Pullan, and B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Janoske, U., G. Silber, R. Kröger, M. Stanull, G. Benderoth, T. Schmitz-Rixen, T. J. Vogel, and R. Moosdorf. Fluid-structure interaction in abdominal aortic aneurysms. In: 7th MpCCI User Conference, 2006.

  6. Jung, B. A., B. W. Kreher, M. Markl, and J. Hennig. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fibre tracking: principles and implications for cardiac fiber structure. Eur. J. Cardiothorac. Surg. 29(1):158–164, 2006.

    Article  Google Scholar 

  7. Krittian, S. Modellierung der kardialen Strömung-Struktur-Wechselwirkung—Implicit coupling for KaHMo FSI. Dissertation, University of Karlsruhe (TH), Germany, 2009.

  8. Krittian, S. B. S., S. Höttges, T. Schenkel, and H. Oertel. Multi-physical simulation of left-ventricular blood flow based on patient-specific MRI data. In: IFMBE Proceedings, 13th International Conference on Biomedical Engineering, Singapore, 2008.

  9. Lemmon, J. D., and A. P. Yoganathan. Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J. Biomech. Eng. 122(2):109–117, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Liepsch, D., G. Thurston, and M. Lee. Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches. Biorheology 28(1–2):39–52, 1991.

    CAS  PubMed  Google Scholar 

  11. McQueen, D. M., and C. S. Peskin. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34(1):56–60, 2000.

    Article  Google Scholar 

  12. Nash, M. P., and P. J. Hunter. Computational mechanics of the heart. J. Elasticity 61(1–3):113–141, 2000.

    Article  Google Scholar 

  13. Oertel, H. Biofluid Mechanics in Prandtl-Essentials of Fluid Mechanics, 3rd edn. New York: Springer, 2009.

    Google Scholar 

  14. Oertel, H., S. Krittian, and K. Spiegel. Modeling the Human Cardiac Fluid Mechanics, 3rd edn. Karlsruhe University Press, 2009.

  15. Peskin, C. The immersed boundary method. Acta Numer. 11:479–517, 2002.

    Article  Google Scholar 

  16. Penrose, J. M. T., and C. J. Staples. Implicit fluid-structure coupling for simulation of cardiovascular problems. Int. J. Numer. Methods Fluids 40:467–478, 2002.

    Article  Google Scholar 

  17. Saber, N. R., N. B. Wood, A. D. Gosman, R. D. Merrifield, G. Z. Yang, C. L. Charrier, P. D. Gatehouse, and D. N. Firmin. Progress towards patient-specific computational flow modelling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann. Biomed. Eng. 31(1):42–52, 2003.

    Article  PubMed  Google Scholar 

  18. Sachse, F. Computational cardiology: modeling of anatomy, electrophysiology, and mechanics. Lect. Notes Comput. Sci. 2966, 2004.

  19. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI based CFD analysis of flow in a human left ventricle. methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009.

    Google Scholar 

  20. Schmid, H., Y. K. Wang, J. Ashton, A. E. Ehret, S. B. S. Krittian, M. P. Nash, and P. J. Hunter. Myocardial material parameter estimation—a comparison of invariant based orthotropic constitutive equations. Comput. Methods Biomech. Biomed. Eng. 12(3):283–295, 2009.

    Article  CAS  Google Scholar 

  21. Taylor, T. W., H. Suga, Y. Goto, H. Okino, and T. Yamaguchi. The effects of cardiac infarction on realistic three dimensional left ventricular blood ejection. J. Biomed. Eng. 118(1):106–110, 1996.

    CAS  Google Scholar 

  22. Vierendeels, J., L. Lanoye, J. Degroote, and P. Verdonck. Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Comput. Struct. 85(11–14):970–976, 2006.

    Article  Google Scholar 

  23. Watanabe, H., S. Sugiura, H. Kafuku, and T. Hisada. Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87:2074–2085, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to express their sincere thanks to all the people who have contributed to and worked on the KaHMo project during recent years. Especially to Dipl.-Ing. Stefan Höttges for providing KaHMo MRT reference data as well as Dr.-Ing. Ralf Kröger (ANSYS Germany GmbH) for providing support for the “Implicit Coupling for KaHMo FSI” Fluent engine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Krittian.

Additional information

Associate Editor James B. Bassingthwaighte oversaw the review of this article.

Appendices

Appendix A: Coupling Flow Chart

Figure 14 shows in more detail the flow chart of the coupling steps performed at the back-end of the coupling graphical interface. The major components are:

  • A: Coupling settings

  • B: Time-step settings

  • C: Time-step-looping

  • D: Energy analysis

  • E: Relaxation engine

Figure 14
figure 14

Flow chart of “Implicit Coupling for KaHMo FSI”: explicit algorithm (white) and implicit extension (gray)

Whereas white boxes describe the former explicit MpCCI coupling, the grey boxes are implemented for coupling implicitly.

Appendix B: Core Coupling Engine

The coupling algorithm in time-step j and looping k carries out the following steps:

  • A: Coupling settings

    1. 1.

      Initialize fluid domain.

    2. 2.

      Initialize coupling procedure.

  • B: Time-step settings

    1. 3.

      Store fluid domain and mesh moving parameters.

    2. 4.

      Store interface position and stress.

    3. 5.

      Store fluid solution for time-step j and looping k.

  • C: Time-step-looping

    1. 6.

      Perform load manipulation:

      $$ \begin{aligned} &{\it If\,\,load\,\,relaxation\,\,is\,\,chosen}\hbox{:} \\ &{{\mathbf{t}}}^j_{k,solid}=\omega_k\cdot {{\mathbf{t}}}^j_{k,fluid}+(1-\omega_k)\cdot {{\mathbf{t}}}^j_{k-1,solid}\\ &{\it If\,\,position\,\,relaxation\,\,is\,\,chosen\hbox{:}}\\ &{{\mathbf{t}}}^j_{k,solid}={{\mathbf{t}}}^j_{k,fluid}. \end{aligned} $$

      Send load t j k,solid to Abaqus via MpCCI.

    2. 7.

      Calculate interface deformation x j k,solid.

    3. 8.

      Return deformation x j k,solid to Fluent via MpCCI.

    4. 9.

      Perform position manipulation:

      $$ \begin{aligned} &{\it If\,load\,\,relaxation\,\,is\,\,chosen}\hbox{:} \\ &{{\mathbf{x}}}^j_{k,fluid}={{\mathbf{x}}}^j_{k,solid}\\ &{\it If\,\,position\,\,relaxation\,\,is\,\,chosen\hbox{:}}\\ &{{\mathbf{x}}}^j_{k,fluid}=\omega_k\cdot {{\mathbf{x}}}^j_{k,solid}+(1-\omega_k)\cdot {{\mathbf{x}}}^j_{k-1,fluid}. \end{aligned} $$

      Reset spatial and flow field from steps 3. & 5. and perform mesh movement to x j k,fluid.

    5. 10.

      Solve flow field for time-step jj + 1.

    6. 11.

      If convergence satisfied go to 3, otherwise go to 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krittian, S., Janoske, U., Oertel, H. et al. Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow. Ann Biomed Eng 38, 1426–1441 (2010). https://doi.org/10.1007/s10439-009-9895-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9895-7

Keywords

Navigation