Skip to main content

Advertisement

Log in

Micromechanical Characterization of Intra-luminal Thrombus Tissue from Abdominal Aortic Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The reliable assessment of Abdominal Aortic Aneurysm rupture risk is critically important in reducing related mortality without unnecessarily increasing the rate of elective repair. Intra-luminal thrombus (ILT) has multiple biomechanical and biochemical impacts on the underlying aneurysm wall and thrombus failure might be linked to aneurysm rupture. Histological slices from 7 ILTs were analyzed using a sequence of automatic image processing and feature analyzing steps. Derived microstructural data was used to define Representative Volume Elements (RVE), which in turn allowed the estimation of microscopic material properties using the non-linear Finite Element Method. ILT tissue exhibited complex microstructural arrangement with larger pores in the abluminal layer than in the luminal layer. The microstructure was isotropic in the abluminal layer, whereas pores started to orient along the circumferential direction towards the luminal site. ILT’s macroscopic (reversible) deformability was supported by large pores in the microstructure and the inhomogeneous structure explains in part the radially changing macroscopic constitutive properties of ILT. Its microscopic properties decreased just slightly from the luminal to the abluminal layer. The present study provided novel microstructural and micromechanical data of ILT tissue, which is critically important to further explore the role of the ILT in aneurysm rupture. Data provided in this study allow an integration of structural information from medical imaging for example, to estimate ILT’s macroscopic mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25:916–926, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Arita, T., N. Matsunaga, K. Takano, S. Nagaoka, H. Nakamura, S. Katayama, N. Zempo, and K. Esato. Abdominal aortic aneurysm: Rupture associated with the high-attenuating crescent sign. Radiology 204:765–768, 1997.

    CAS  PubMed  Google Scholar 

  3. Bengtsson, H., B. Sonesson, and D. Bergqvist. Incidence and prevalence of abdominal aortic aneurysms, estimated by necropsy studies and population screening by ultrasound. Ann. N.Y. Acad. Sci., 800:1–24, 1996.

    Article  CAS  PubMed  Google Scholar 

  4. Bosch, J. L., J. S. Lester, P. M. McMahon, M. T. Beinfeld, E. F. Halpern, J. A. Kaufman, D. C. Brewster, and G. S. Gazelle. Hospital costs for elective endovascular and surgical repairs of infrarenal abdominal aortic aneurysms. Radiology 220:492–497, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Breuls, R. G., B. G. Sengers, C. W. Oomens, C. V. Bouten, and F. P. Baaijens. Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. J. Biomech. Eng. 124:198–207, 2002.

    Article  PubMed  Google Scholar 

  6. Choke, E., G. Cockerill, W. R. Wilson, S. Sayed, J. Dawson, I. Loftus, and M. M. Thompson. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur. J. Vasc. Endovasc. Surg. 30:227–244, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. di Martino, E. S., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa, and R. Fumero. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterization and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Gasser, T. C., M. Auer, and J. Biasetti. Structural and hemodynamical analysis of aortic aneurysms from computerized tomography angiography data. In: Proceedings of the World Congress 2009 – Medical Physics and Biomedical Engineering, September 7–12, Munich, Germany, 2009.

  9. Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intra-luminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48:179–188, 2008.

    Article  PubMed  Google Scholar 

  10. Guliak, F., and V. C. Mow. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.

    Article  Google Scholar 

  11. Hans, S. S., O. Jareunpoon, M. Balasubramaniam, and G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41:584–588, 2005.

    Article  PubMed  Google Scholar 

  12. Inzoli, F., F. Boschetti, M. Zappa, T. Longo, and R. Fumero. Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 7:667–674, 1993.

    Article  CAS  PubMed  Google Scholar 

  13. Jonk, Y. C., R. L. Kane, F. A. Lederle, R. MacDonald, A. H. Cutting, and T. J. Wilt. Cost-effectiveness of abdominal aortic aneurysm repair: a systematic review. Int. J. Technol. Assess. Health Care 23:205–215, 2007.

    Article  PubMed  Google Scholar 

  14. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38:1283–1292, 2003.

    Article  PubMed  Google Scholar 

  15. Kazi, M., C. Zhu, J. Roy, G. Paulsson-Berne, A. Hamsten, J. Swedenborg, U. Hedin, and P. Eriksson. Difference in matrix-degrading protease expression and activity between thrombus-free and thrombus-covered wall of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 25:1341–1346, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z.-Y., J. U-King-Im, T. Y. Tang, E. Soh, T. C. See, and J. H. Gillard. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J. Vasc. Surg. 47:928–935, 2008.

    Article  PubMed  Google Scholar 

  17. Malvern, L. E. Introduction to the Mechanics of a Continuous Medium. New Jersey: Prentice-Hall, Englewood Cliffs, 1969.

  18. Mower, W. R., W. J. Quiñones, and S. S. Gambhir. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Surg. 33:602–608, 1997.

    Article  Google Scholar 

  19. Newman, A. B., A. M. Arnold, G. L. Burke, D. H. O’Leary, and T. A. Manolio. Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography: the cardiovascular health study. Ann. Intern. Med. 134:182–190, 2001.

    CAS  PubMed  Google Scholar 

  20. Ogden, R. W. Non-linear Elastic Deformations. New York: Dover, 1997.

  21. Roy, J., F. Labruto, M. O. Beckman, J. Danielson, G. Johansson, and J. Swedenborg. Bleeding into the intraluminal thrombus in abdominal aortic aneurysms is associated with rupture. J. Vasc. Surg. 48:1108–1113, 2008.

    Article  PubMed  Google Scholar 

  22. Simão da Silva, E., A. J. Rodrigues, E. Magalhães Castro de Tolosa, C. J. Rodrigues, G. Villas Boas do Prado, and J. C. Nakamoto. Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study. Cardiovasc. Surg. 8:526–532, 2000.

    Article  Google Scholar 

  23. Swedenborg, J., F. Labruto, and J. Roy. Bleeding into the thrombus in ruptured abdominal aortic aneurysms. In: More Vascular and Endovascular Challenges, edited by R. M. Greenhalgh. London: BIBA Publishing, 2007, pp. 63–67.

  24. Upchurch Jr., G. R., and T. A. Schaub. Abdominal aortic aneurysm. Am. Fam. Physician 73:1198–1204, 2006.

    PubMed  Google Scholar 

  25. Vardulaki, K. A., T. C. Prevost, N. M. Walker, N. E. Day, A. B. Wilmink, C. R. Quick, H. A. Ashton, and R. A. Scott. Growth rates and risk of rupture of abdominal aortic aneurysms. Br. J. Surg. 85:1674–1680, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, and M. W. Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. Vorp, D. A., and J. P. Vande Geest. Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler. Thromb. Vasc. Biol. 25:1558–1566, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, D. H., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123:536–539, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, D. H., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.

    Article  PubMed  Google Scholar 

  30. Zienkiewicz, O. C., and R. L. Taylor. The Finite Element Method. The Basis, Vol. 1, 5th edn. Oxford: Butterworth Heinemann, 2000.

Download references

Acknowledgments

We would like to thank Sebastian Günther for his contributions regarding image processing and Jacopo Biasetti for his valuable comments about Matlab R2007a (TheMathworks). This work has been supported by the Young Faculty Grant No. 2006-7568 provided by the Swedish Research Council, VINNOVA and the Swedish Foundation for Strategic Research, and the EC Seventh Framework Programme, Fighting Aneurysmal Disease (FAD-200647), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Christian Gasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasser, T.C., Martufi, G., Auer, M. et al. Micromechanical Characterization of Intra-luminal Thrombus Tissue from Abdominal Aortic Aneurysms. Ann Biomed Eng 38, 371–379 (2010). https://doi.org/10.1007/s10439-009-9837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9837-4

Keywords

Navigation