Skip to main content
Log in

Constitutive Modeling of Liver Tissue: Experiment and Theory

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Realistic surgical simulation requires incorporation of the mechanical properties of soft tissue in mathematical models. In actual deformation of soft-tissue during surgical intervention, the tissue is subject to tension, compression, and shear. Therefore, characterization and modeling of soft-tissue in all these three deformation modes are necessary. In this paper we applied two types of pure shear test, unconfined compression and uniaxial tension test to characterize porcine liver tissue. Digital image correlation technique was used to accurately measure the tissue deformation field. Due to gravity and its effect on the soft tissue, a maximum stretching band was observed from the relative strain field on sample undergoing tension and pure shear test. The zero strain state was identified according to the position of this maximum stretching band. Two new constitutive models based on combined exponential/logarithmic and Ogden strain energy were proposed. The models are capable to represent the observed non-linear stress–strain relation of liver tissue for full range of tension and compression and also the general response of pure shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Brown, J. D., J. Rosen, M. N. Sinaman, and B. Hannaford. In vivo and postmortem compressive properties of porcine abdominal organs. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2003, No. 2878 in Lecture Notes in Computer Science, 2003, pp. 238–245.

  2. Butler, D. L., E. S. Grood, F. R. Noyes, R. F. Zernicke, and K. Brackett. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8):579–596, 1984.

    Article  CAS  PubMed  Google Scholar 

  3. Carter, F., T. Frank, P. Davies, D. McLean, and A. Cuschieri. Measurements and modelling of the compliance of human and porcine organs. Med. Image Anal. 5:231–236, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Charlton, D., J. Yang, and K Teh. A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chem. Technol. 67:481–503, 1994.

    CAS  Google Scholar 

  5. Chui, C., E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma. Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation. Med. Biol. Eng. Comput. 42(6):787–798, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Chui, C., E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Med. Biol. Eng. Comput. 45(1):99–106, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Davies, P. J., F. J. Carter, and A. Cuschieri. Mathematical modelling for keyhold surgery simulations: a biomechanical model for spleen tissue. IMA J. Appl. Math. 67:41–67, 2002.

    Article  Google Scholar 

  8. Dokos, S., I. J. LeGrice, B. H. Smaill, J. Kar, and A. A. Young. A triaxial-measurement shear-test device for soft biological tissues. J. Biomech. Eng. 122:471–478, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol.-Heart Circ. Physiol. 283:H2650–H2659, 2002.

    CAS  PubMed  Google Scholar 

  10. Farshad, M., M. Barbezat, P. Flueler, F. Schmidlin, P. Graber, and P. Niederer. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32:417–425, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Google Scholar 

  12. Gao, Z., and J. P. Desai. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation. In review.

  13. Gao, Z., K. Lister, and J. P. Desai. Constitutive modeling of liver tissue: experiment and theory. In: Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, 2008, pp. 477–482.

  14. Gardiner, J. C., and J. A. Weiss. Simple shear testing of parallel-fibered plannar soft tissues. J. Biomech. Eng. 123:170–175, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, D. L., B. S. Chen, and N. S. Liou. Investigating full-field deformation of planar soft tissue under simple-shear tests. J. Biomech. 40(5):1165–1170, 2007.

    Article  PubMed  Google Scholar 

  16. Ham, A. W. Histology (6th ed.), Chap. Pancreas, Liver and Gallbladder. Philadelphia and Toronto: J. B. Lippincott Company, pp. 711–717, 1969.

    Google Scholar 

  17. Hollenstein, M., A. Nava, D. Valtorta, J. G. Snedeker, and E. Mazza. Biomedical Simulation, Lecture Notes in Computer Science, Vol. 4072, Chap. Mechanical Characterization of the Liver Capsule and Parenchyma. Berlin/Heidelberg: Springer, pp. 150–158, 2006.

  18. Hu, T., and J. P. Desai. Modeling large deformation in soft-tissues: experimental results and analysis. In: EuroHaptics. Munich, Germany, 2004.

  19. Hu, T., C. Lau, and J. P. Desai. Instrumentation for testing soft-tissue undergoing large deformation: ex vivo and in vivo studies. ASME J. Med. Devices 2(4):041001-1–041001-6, 2008.

    Google Scholar 

  20. Jordan, P., S. Socrate, T. Zickler, and R. Howe. Constitutive modeling of porcine liver in indentation using 3d ultrasound imaging. J. Mech. Behav. Biomed. Mater. 2:192–201, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Kerdok, A. E., M. P. Ottensmeyer, and R. D. Howe. Effects of perfusion on the viscoelastic characteristics of liver. J. Biomech. 39:2221–2231, 2006.

    Article  PubMed  Google Scholar 

  22. Mazza, E., A. Nava, D. Hahnloser, W. Jochum, and M. Bajka. The mechanical response of human liver and its relation to histology: an in vivo study. Med. Image Anal. 11:663–672, 2007.

    Article  PubMed  Google Scholar 

  23. Miller, K. Constitutive modelling of abdominal organs. J. Biomech. 33:367–373, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Miller, K., and K. Chinzei. Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30:1115–1121, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Miller, K., and K. Chinzei. Mechanical properties of brain tissue in tension. J. Biomech. 35(4):483–490, 2002.

    Article  PubMed  Google Scholar 

  26. Miller, K., Z. Taylor, and W. L. Nowinski. Towards computing brain deformations for diagnosis, prognosis and neurosurgical simulation. J. Mech. Med. Biol. 5(1):105–121, 2005.

    Article  Google Scholar 

  27. Nava, A., E. Mazza, M. Furrer, P. Villiger, and W. Reinhart. In vivo mechanical characterization of human liver. Med. Image Anal. 12:203–216, 2008.

    Article  CAS  PubMed  Google Scholar 

  28. Ogden, R. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Ser. A 326:565–584, 1972.

    Article  CAS  Google Scholar 

  29. Paulsen, K. D., M. I. Miga, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts. A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 46(2):213–225, 1999.

    Article  CAS  PubMed  Google Scholar 

  30. Roan, E., and K. Vemaganti. The nonlinear material properties of liver tissue determined from non-slip uniaxial compression experiments. J. Biomech. Eng. 129:450–456, 2007.

    Article  PubMed  Google Scholar 

  31. Saraf, H., K. Ramesh, A. Lennon, A. Merkle, and J. Roberts. Measurement of the dynamic bulk and shear response of soft human tissues. Exp. Mech. 47:439–449, 2007.

    Article  Google Scholar 

  32. Shuck, L. Z., and S. H. Advani. Rheological response of human brain tissue in shear. J. Basic Eng. 94(4):905–911, 1972.

    Google Scholar 

  33. Valtorta, D., and E. Mazza. Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device. Med. Image Anal. 9:481–490, 2005.

    Article  PubMed  Google Scholar 

  34. Vito, R. P., and S. A. Dixon. Blood vessel constitutive models—1995–2002. Annu. Rev. Biomed. Eng. 5:413–439, 2003.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (NIH) under Grant 1R01EB006615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Gao.

Additional information

Portions reprinted, with permission, from: “Zhan Gao, Kevin Lister, and Jaydev P. Desai, 2008. Constitutive modeling of liver tissue: experiment and theory. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, pp. 477–482, October 19–22, 2008, Scottsdale, AZ” ©2008 IEEE.

Portions reprinted, with permission, from: “Zhan Gao, Theodore Kim, Doug L. James, Jaydev P. Desai, 2009. Semi-automated soft-tissue acquisition and modeling for surgical simulation. In: 5th Annual IEEE Conference on Automation Science and Engineering, CASE 2009, pp. 268–273, August 22–25, 2009, Bangalore, India.” ©2009 IEEE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Lister, K. & Desai, J.P. Constitutive Modeling of Liver Tissue: Experiment and Theory. Ann Biomed Eng 38, 505–516 (2010). https://doi.org/10.1007/s10439-009-9812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9812-0

Keywords

Navigation