Skip to main content

Advertisement

Log in

Feasible Stability Region in the Frontal Plane During Human Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The inability to adequately control the motion of the center of mass (COM) in the frontal plane may result in a loss of balance causing a sideways fall during human gait. The primary purposes of this study were (1) to derive the feasible stability region (FSR) in the mediolateral direction, and (2) to compare the FSR with the COM motion state taken from 193 trials among 39 young subjects at liftoff during walking at different speeds. The lower boundary of the FSR was derived, at a given initial COM location, as the minimum rightward COM velocity, at liftoff of the left foot, required to bring the COM into the base of support (BOS), i.e., the right (stance) foot, as the COM velocity diminishes. The upper boundary was derived as the maximum rightward COM velocity, beyond which the left foot must land to the right of the right foot (BOS) in order to prevent a fall. We established a 2-link human model and employed dynamic optimization to estimate these threshold values for velocity. For a range of initial COM positions, simulated annealing algorithm was used to search for the threshold velocity values. Our study quantified the extent to which mediolateral balance can still be maintained without resorting to a crossover step (the left foot lands to the right of the BOS) for balance recovery. The derived FSR is in good agreement with our gait experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agie, A., V. Nikolie, and B. Mijovie. Foot anthropometry and morphology phenomena. Coll. Antropol. 30:815–821, 2006.

    Google Scholar 

  2. Anderson, F. C. A dynamic optimization solution for a complete cycle of normal gait: an analysis of muscle function and joint contact force. PhD dissertation, University of Texas at Austin, Austin, Texas, 1999.

  3. Barak, Y., R. C. Wagenaar, and K. G. Holt. Gait characteristics of elderly people with a history of falls: a dynamic approach. Phys. Ther. 86:1501–1510, 2006.

    Article  PubMed  Google Scholar 

  4. Beauchet, O., G. Allali, G. Berrut, and V. Dubost. Is low lower-limb kinematic variability always an index of stability? Gait Posture 26:327–328, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Bhatt, T., and Y.-C. Pai. Immediate and latent interlimb transfer of gait stability adaptation following repeated exposure to slips. J. Motor Behav. 40:380–390, 2009.

    Article  Google Scholar 

  6. Bhatt, T., J. D. Wening, and Y.-C. Pai. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait Posture 21:146–156, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatt, T., J. D. Wening, and Y.-C. Pai. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp. Brain Res. 170:61–73, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Bieryla, K. A., M. L. Madigan, and M. A. Nussbaum. Practicing recovery from a simulated trip improves recovery kinematics after an actual trip. Gait Posture 26:208–213, 2007.

    Article  PubMed  Google Scholar 

  9. Borelli, G. A. On the Movement of Animals. Berlin: Springer-Verlag, 236 pp., 1989.

  10. Cham, R., and M. S. Redfern. Heel contact dynamics during slip events on level and inclined surfaces. Saf. Sci. 40:559–576, 2002.

    Article  Google Scholar 

  11. Colum, D., D. Mackinnon, and D. A. Winter. Control of whole body balance in the frontal plane during human walking. J. Biomech. 26:633–644, 1993.

    Article  Google Scholar 

  12. Corona, A., M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal functions of continuous variables with the “Simulated Annealing” algorithm. ACM Trans. Math. Software 13:262–280, 1987.

    Article  Google Scholar 

  13. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. John, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  14. Delp, S. L., and J. P. Loan. A computational framework for simulating and analyzing human and animal movement. Comput. Sci. Eng. 2:46–55, 2000.

    Article  Google Scholar 

  15. Dingwell, J., J. Cusumano, P. Cavanagh, and D. Sternad. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123:27–32, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Dingwell, J. B., and J. P. Cusumano. Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863, 2000.

    Article  PubMed  Google Scholar 

  17. Dingwell, J. B., K. H. Gu, and L. C. Marin. The effects of sensory loss and walking speed on the orbital dynamic stability of human walking. J. Biomech. 40:1723–1730, 2007.

    Article  PubMed  Google Scholar 

  18. England, S. A., and K. P. Granata. The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178, 2007.

    Article  PubMed  Google Scholar 

  19. Geng, T., B. Porr, and F. Worgotter. Fast biped walking with a sensor-driven neuronal controller and real-time online learning. Int. J. Robot. Res. 25:243–259, 2006.

    Article  Google Scholar 

  20. Goswami, A., B. Espiau, and B. Thuilot. Compass-like Bipedal Robot Part I: Stability and Bifuraction of Passive Gaits, Report Number: 2996. Unite de recherche INRIA Rhone-Alpes, Montbonnot St Martin, France, pp. 1–86, 1996.

  21. Greenspan, S. L., B. R. Myers, D. P. Kiel, R. A. Parker, W. C. Hayes, and N. M. Resnick. Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly. Am. J. Med. 104:539–545, 1998.

    Article  CAS  PubMed  Google Scholar 

  22. Haddad, J. M., J. L. Gagnon, C. J. Hasson, R. E. A. Van Emmerik, and J. Hamill. Evaluation of time-to-contact measures for assessing postural stability. J. Appl. Biomech. 22:155–161, 2006.

    PubMed  Google Scholar 

  23. Hasson, C. J., R. E. A. Van Emmerik, and G. E. Caldwell. Predicting dynamic postural instability using center of mass time-to-contact information. J. Biomech. 41:2121–2129, 2008.

    Article  PubMed  Google Scholar 

  24. Hausdorff, J. M., D. A. Rios, and H. K. Edelberg. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82:1050–1056, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Helbostad, J. L., and R. Moe-Nilssen. The effect of gait speed on lateral balance control during walking in healthy elderly. Gait Posture 18:27–36, 2003.

    Article  PubMed  Google Scholar 

  26. Hof, A. L., M. G. Gazendam, and W. E. Sinke. The condition for dynamic stability. J. Biomech. 38:1–8, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Hof, A. L., R. M. van Bockel, T. Schoppen, and K. Postema. Control of lateral balance in walking experimental findings in normal subjects and above-knee amputees. Gait Posture 25:250–258, 2007.

    Article  PubMed  Google Scholar 

  28. Hurmuzlu, Y. Dynamics of bipedal gait: Part II. Stability analysis of a planar five-link biped. J. Appl. Mech. 60:337–343, 1993.

    Article  Google Scholar 

  29. Kuo, A. D. Stabilization of lateral motion in passive dynamic walking. Int. J. Robot. Res. 18:917–930, 1999.

    Article  Google Scholar 

  30. Kuo, A. D., J. M. Donelan, and A. Ruina. Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exer. Sport Sci. Rev. 33:88–97, 2005.

    Google Scholar 

  31. Lockhart, T. E., and J. Liu. Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics 51:1860–1872, 2008.

    Article  PubMed  Google Scholar 

  32. Lord, S. R., P. N. Sambrook, C. Gilbert, P. J. Kelly, T. Nquyen, T. W. Webster, and J. A. Eisman. Postural stability, falls and fractures in the elderly: results from the Dubbo Osteporosis Epidemiology study. Med. J. Aust. 160:688–691, 1994.

    Google Scholar 

  33. Maki, B. E. Gait changes in older adults: predictors of falls or indicators of fear. J. Am. Geriatr. Soc. 45:313–320, 1997.

    CAS  PubMed  Google Scholar 

  34. Maki, B. E., P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49:M72–M84, 1994.

    CAS  PubMed  Google Scholar 

  35. Mille, M. L., M. W. Rogers, K. Martinez, L. D. Hedman, M. E. Johnson, S. R. Lord, and R. C. Fitzpatrick. Thresholds for inducing protective stepping responses to external perturbations of human standing. J. Neurophysiol. 90:666–674, 2003.

    Article  PubMed  Google Scholar 

  36. Newell, K. M. Degrees of freedom and the development of postural center of pressure profiles. In: Application of Nonlinear Dynamics to Developmental Process Modeling, edited by K. M. Newell and P. C. M. Molenaar. Mahwah, NJ: Erlbaum, 1997, pp. 63–84.

  37. Pai, Y.-C. Movement termination and stability in standing. Exerc. Sport Sci. Rev. 31:19–25, 2003.

    Article  PubMed  Google Scholar 

  38. Pai, Y.-C., and K. Iqbal. Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability even in the presence of slipping or forced sliding? J. Biomech. 32:779–786, 1999.

    Article  CAS  PubMed  Google Scholar 

  39. Pai, Y.-C., B. E. Maki, K. Iqbal, W. E. McIlroy, and S. D. Perry. Thresholds for step initiation induced by support-surface translation: a dynamic center-of-mass model provides much better prediction than a static model. J. Biomech. 33:387–392, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Pai, Y.-C., and J. Patton. Center of mass velocity-position predictions for balance control. J. Biomech. 30:347–354, 1997.

    Article  CAS  PubMed  Google Scholar 

  41. Pai, Y.-C., M. W. Rogers, J. Patton, T. D. Cain, and T. A. Hanke. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J. Biomech. 30:347–354, 1998.

    Article  Google Scholar 

  42. Pai, Y.-C., J. D. Wening, E. F. Runtz, K. Iqbal, and M. J. Pavol. Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J. Neurophysiol. 90:755–762, 2003.

    Article  PubMed  Google Scholar 

  43. Patton, J. L., W. A. Lee, and Y.-C. Pai. Relative stability improves with experience in a dynamic standing task. Exp. Brain Res. 135:117–126, 2000.

    Article  CAS  PubMed  Google Scholar 

  44. Patton, J. L., Y.-C. Pai, and W. A. Lee. Evaluation of a model that determines the stability limits of dynamic balance. Gait Posture 9:38–49, 1999.

    Article  CAS  PubMed  Google Scholar 

  45. Piirtola, M., and P. Era. Force platform measurements as predictors of falls among older people—a review. Gerontology 52:1–16, 2006.

    Article  PubMed  Google Scholar 

  46. Pontaga, I. Ankle joint evertor-invertor muscle torque ratio decrease due to recurrent lateral ligament sprains. Clin. Biomech. 19:760–762, 2004.

    Article  Google Scholar 

  47. Redfield, R., and M. L. Hull. On the relation between joint moments and pedaling rates at constant power in bicycling. J. Biomech. 19:317–330, 1986.

    Article  CAS  PubMed  Google Scholar 

  48. Resnick, N. M., and S. L. Greenspan. “Senile” osteoporosis reconsidered. J. Am. Med. Assoc. 261:1025–1029, 1989.

    Article  CAS  Google Scholar 

  49. Saunders, J. B. d. M., V. T. Inman, and H. D. Eberhart. The major determinants in normal and pathological gait. J. Bone Joint Surg. 35:543–558, 1953.

    PubMed  Google Scholar 

  50. Troy, K. L., S. J. Donovan, J. R. Marone, M. L. Bareither, and M. D. Grabiner. Modifiable performance domain risk-factors associated with slip-related falls. Gait Posture 28:461–465, 2008.

    Article  PubMed  Google Scholar 

  51. van Soest, A. J., and L. J. Casius. The merits of a parallel genetic algorithm in solving hard optimization problems. J. Biomech. Eng. 2003125:141–146, 2003.

    Article  Google Scholar 

  52. Vukobratovic, M., and D. Juricic. Contribution to the Synthesis of the Biped Gait. IEEE Trans. Biomed. Eng. 16:1–6, 1969.

    Article  CAS  PubMed  Google Scholar 

  53. Winter, D. A. Biomechanics and Motor Control of Human Movement. New York: Wiley, 277 pp., 1990.

  54. Wu, Q., and R. Swain. A mathematical model of the stability control of human thorax and pelvis movements during walking. Comput. Methods Biomech. Biomed. Eng. 5:67–74, 2002.

    Article  CAS  Google Scholar 

  55. Yang, F., F. C. Anderson, and Y.-C. Pai. Predicted threshold against backward balance loss in gait. J. Biomech. 40:804–811, 2007.

    Article  PubMed  Google Scholar 

  56. Yang, F., F. C. Anderson, and Y.-C. Pai. Predicted threshold against backward balance loss following a slip in gait. J. Biomech. 41:1823–1831, 2008.

    Article  PubMed  Google Scholar 

  57. Yang, F., T. Bhatt, and Y.-C. Pai. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J. Biomech. 42:1903–1908, 2009.

    Article  PubMed  Google Scholar 

  58. Yang, F., F. Passariello, and Y.-C. Pai. Determination of instantaneous stability against backward balance loss: two computational approaches. J. Biomech. 41:1818–1822, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was funded by NIH 2R01-AG16727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chung Pai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Espy, D. & Pai, YC. Feasible Stability Region in the Frontal Plane During Human Gait. Ann Biomed Eng 37, 2606–2614 (2009). https://doi.org/10.1007/s10439-009-9798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9798-7

Keywords

Navigation