Skip to main content

Advertisement

Log in

The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Developments in breast cancer therapies show potential for replacing simple and radical mastectomies with less invasive techniques. Localized thermal techniques encounter difficulties, preventing their widespread acceptance as replacements for surgical resection. Irreversible electroporation (IRE) is a non-thermal, minimally invasive focal ablation technique capable of killing tissue using electric pulses to create irrecoverable nano-scale pores in the cell membrane. Its unique mechanism of cell death exhibits benefits over thermal techniques including rapid lesion creation and resolution, preservation of the extracellular matrix and major vasculature, and reduced scarring. This study investigates applying IRE to treat primary breast tumors located within a fatty extracellular matrix despite IREs dependence on the heterogeneous properties of tissue. In vitro experiments were performed on MDA-MB-231 human mammary carcinoma cells to determine a baseline electric field threshold (1000 V/cm) to cause IRE for a given set of pulse parameters. The threshold was incorporated into a three-dimensional numerical model of a heterogeneous system to simulate IRE treatments. Treatment-relevant protocols were found to be capable of treating targeted tissue over a large range of heterogeneous properties without inducing significant thermal damage, making IRE a potential modality for successfully treating breast cancer. Information from this study may be used for the investigation of other heterogeneous tissue applications for IRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Al-Sakere, B., F. Andre, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir. Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135, 2007.

    Article  PubMed  Google Scholar 

  2. Al-Sakere, B., C. Bernat, F. Andre, E. Connault, P. Opolon, R. V. Davalos, and L. M. Mir. A study of the immunological response to tumor ablation with irreversible electroporation. Technol. Cancer Res. Treat. 6:301–305, 2007.

    CAS  PubMed  Google Scholar 

  3. Bowman, H. F. Heat transfer and thermal dosimetry. J. Microw. Power 16:121–133, 1981.

    CAS  PubMed  Google Scholar 

  4. Cady, B. Breast cancer in the third millennium. Breast J. 6:280–287, 2000.

    Article  PubMed  Google Scholar 

  5. Clough, K. B. Oncoplastic surgery allows extensive resections for conservative treatment of breast cancer. Eur. J. Cancer 4:S119, 2006.

    Google Scholar 

  6. Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Diller, K. R. Advances in heat transfer. In: Bioengineering Heat Transfer, edited by Y. I. Choi. Boston: Academic Press, 1992, pp. 157–357.

    Chapter  Google Scholar 

  9. Dowlatshahi, K., D. Francescatti, and K. Bloom. Laser therapy for small breast cancers. Am. J. Surg. 184:359–363, 2002.

    Article  PubMed  Google Scholar 

  10. Edd, J. F., and R. V. Davalos. Mathematical modeling of irreversible electroporation for treatment planning. Technol. Cancer Res. Treat. 6:275–286, 2007.

    PubMed  Google Scholar 

  11. Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.

    Article  PubMed  Google Scholar 

  12. Esser, A. T., K. C. Smith, T. R. Gowrishankar, and J. C. Weaver. Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue. Technol. Cancer Res. Treat. 6:261–273, 2007.

    PubMed  Google Scholar 

  13. Fedorcik, G. G., R. Sachs, and M. A. Goldfarb. Oncologic and aesthetic results following breast-conserving therapy with 0.5 cm margins in 100 consecutive patients. Breast J. 12:208–211, 2006.

    Article  PubMed  Google Scholar 

  14. Field, S. B., and C. C. Morris. The relationship between heating time and temperature: its relevance to clinical hyperthermia. Radiother. Oncol. 1:179–183, 1983.

    Article  CAS  PubMed  Google Scholar 

  15. Fisher, B., C. Redmond, R. Poisson, et al. Eight-year results of a randomized clinical trial comparing total mastectomy and lumpectomy with or without irradiation in the treatment of breast cancer. N. Engl. J. Med. 320:822–828, 1989.

    CAS  PubMed  Google Scholar 

  16. Fitzal, F., M. Mittleboeck, H. Trischler, and W. Krois. Breast-conserving therapy for centrally located breast cancer. Ann. Surg. 247:470–476, 2008.

    Article  PubMed  Google Scholar 

  17. Franquet, T., C. D. Miguel, R. Cozcolluela, and L. Donoso. Spiculated lesions of the breast: mammographic-pathologic correlation. RadioGraphics 13:841–852, 1993.

    CAS  PubMed  Google Scholar 

  18. Gautherie, M., Y. Quenneville, and C. M. Gros. Metabolic heat production, growth rate, and prognosis of early breast carcinomas. Biomedicine 22:328–336, 1975.

    CAS  PubMed  Google Scholar 

  19. Giering, K., I. Lamprecht, O. Minet, and A. Handke. Determination of the specific heat capacity of healthy and tumorous human tissue. Thermochim. Acta 251:199–205, 1995.

    Article  CAS  Google Scholar 

  20. Gomez-Iturriaga, A., L. Pina, M. Cambeiro, and R. Martinez-Monge. Early breast cancer treated with conservative surgery, adjuvant chemotherapy, and delayed accelerated partial breast irradiation with high-dose-rate brachytherapy. Brachytherapy 7:310–315, 2008.

    Article  PubMed  Google Scholar 

  21. Hibino, M., H. Itoh, and K. J. Kinosita. Time course of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800, 1993.

    Article  CAS  PubMed  Google Scholar 

  22. Janzen, N. K., K. T. Perry, K.-R. Han, B. Kristo, S. Raman, et al. The effects of intentional cryoablation and radio frequency ablation of renal tissue involving the collecting system in a porcine model. J. Urol. 173:1368–1374, 2005.

    Article  PubMed  Google Scholar 

  23. Jemal, A., R. Tiwari, T. Murray, et al. Cancer statistics 2004. CA Cancer J. Clin. 54:8–29, 2004.

    Article  PubMed  Google Scholar 

  24. Johns, P. C., and M. J. Yaffe. X-ray characterisation of normal and neoplastic breast tissues. Phys. Med. Biol. 32:675–695, 1987.

    Article  CAS  PubMed  Google Scholar 

  25. Jossinet, J. Variability of impedivity in normal and pathological breast tissue. Med. Biol. Eng. Comput. 34:346–350, 1996.

    Article  CAS  PubMed  Google Scholar 

  26. Kontos, M., E. Felekouras, and I. S. Fentiman. Radiofrequency ablation in the treatment of primary breast cancer: no surgical redundancies yet. Int. J. Clin. Pract. 62:816–620, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Krassowska, W., G. S. Nanda, M. B. Austin, and S. B. Dev. Viability of cancer cells exposed to pulsed electric fields: the role of pulse charge. Ann. Biomed. Eng. 31:80–90, 2003.

    Article  PubMed  Google Scholar 

  28. Lee, R. C. Cell injury by electric forces. Ann. NY Acad. Sci. 1066:85–91, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, E. W., C. T. Loh, and S. T. Kee. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol. Cancer Res. Treat. 6:287–293, 2007.

    PubMed  Google Scholar 

  30. Lee, R. C., D. Zhang, et al. Biophysical injury mechanisms in electrical shock trauma. In: Annual Review of Biomedical Engineering, edited by M. L. Yarmish, K. R. Diller, and M. Toner. Palo Alto: Annual Review Press, 2000, pp. 477–509.

    Google Scholar 

  31. Maor, E., A. Ivorra, J. Leor, and B. Rubinsky. The effect of irreversible electroporation on blood vessels. Technol. Cancer Res. Treat. 6:307–312, 2007.

    PubMed  Google Scholar 

  32. Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. In vivo electroporation threshold determination. In: Proceedings of the 22nd Annual EMBS International Conference, Chicago, IL, 2000.

  33. Mir, L. M. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10, 2000.

    Article  Google Scholar 

  34. Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.

    Article  CAS  PubMed  Google Scholar 

  35. Mir, L. M., S. Orlowski, J. J. Belehradek, J. Teissie, and M. P. Rols. Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem. Bioenerg. 38:203–207, 1995.

    Article  CAS  Google Scholar 

  36. Ng, E. Y. K., and N. M. Sudharsan. An improved three-dimensional direct numerical modeling and thermal analysis of a female breast with tumor. Proc. IME. H. J. Eng. Med. 215:25–37, 2001.

    Article  CAS  Google Scholar 

  37. Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6:295–300, 2007.

    PubMed  Google Scholar 

  38. Perez, C. A., and S. A. Sapareto. Thermal dose expression in clinical hyperthermia and correlation with tumor response/control. Cancer Res. 44:4818s–4825s, 1984.

    CAS  PubMed  Google Scholar 

  39. Preda, L., G. Villa, S. Rizzo, and L. Bazzi. Magnetic resonance mammography in the evaluation of recurrence at the prior lumpectomy site after conservative surgery and radiotherapy. Breast Cancer Res. 8:2006.

  40. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.

    PubMed  Google Scholar 

  41. Sabel, M. S., C. S. Kaufman, P. Whitworth, H. Change, L. H. Stocks, R. Simmons, and M. Schultz. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann. Surg. Oncol. 11:542–549, 2004.

    Article  PubMed  Google Scholar 

  42. Sapareto, S. A. Thermal dose determination in cancer therapy. Radiother. Oncol. 10:787–795, 1984.

    CAS  Google Scholar 

  43. Sickles, E. A., and K. A. Herzog. Intramammary scar tissue: a mimic of the mammographic appearance of carcinoma. Am. J. Roentgenol. 135:349–352, 1980.

    CAS  Google Scholar 

  44. Singletary, S., B. Fornage, N. Sneige, et al. Radiofrequency ablation of early-stage invasive breast tumors: an overview. Cancer J. 8:177–180, 2002.

    Article  PubMed  Google Scholar 

  45. Skinner, M. G. A theoretical comparison of energy sources—microwave, ultrasound and laser—for interstitial thermal therapy. Phys. Med. Biol. 43:3535, 1998.

    Article  CAS  PubMed  Google Scholar 

  46. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Trans. Biomed. Eng. 35:257–263, 1988.

    Article  CAS  PubMed  Google Scholar 

  47. Weaver, J. C. Electroporation: a general phenomenon for manipulating cells and tissue. J. Cell. Biochem. 51:426–435, 1993.

    CAS  PubMed  Google Scholar 

  48. Weaver, J. C. Electroporation of biological membranes from multicellular to nano scales. IEEE Trans. Dielect. Elect. Ins. 754–768, 2003.

  49. Weaver, J. C., and Y. A. Chizmadzhev. Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41:135–160, 1996.

    Article  CAS  Google Scholar 

  50. Werner, J., and M. Buse. Temperature profiles with respect to inhomogeneity and geometry of the human body. J. Appl. Physiol. 65:1110–1118, 1988.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by The Coulter Foundation. We acknowledge the assistance of Erin Bredeman, Paulo Garcia, and Chris Arena and the technical help of Ravi Singh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Davalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, R.E., Davalos, R.V. The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems. Ann Biomed Eng 37, 2615–2625 (2009). https://doi.org/10.1007/s10439-009-9796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9796-9

Keywords

Navigation