Skip to main content

Advertisement

Log in

New Cardiac MRI Gating Method Using Event-Synchronous Adaptive Digital Filter

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

When imaging the heart using MRI, an artefact-free electrocardiograph (ECG) signal is not only important for monitoring the patient’s heart activity but also essential for cardiac gating to reduce noise in MR images induced by moving organs. The fundamental problem in conventional ECG is the distortion induced by electromagnetic interference. Here, we propose an adaptive algorithm for the suppression of MR gradient artefacts (MRGAs) in ECG leads of a cardiac MRI gating system. We have modeled MRGAs by assuming a source of strong pulses used for dephasing the MR signal. The modeled MRGAs are rectangular pulse-like signals. We used an event-synchronous adaptive digital filter whose reference signal is synchronous to the gradient peaks of MRI. The event detection processor for the event-synchronous adaptive digital filter was implemented using the phase space method—a sort of topology mapping method—and least-squares acceleration filter. For evaluating the efficiency of the proposed method, the filter was tested using simulation and actual data. The proposed method requires a simple experimental setup that does not require extra hardware connections to obtain the reference signals of adaptive digital filter. The proposed algorithm was more effective than the multichannel approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Abacherli, R., C. Pasquier, F. Odille, M. Kraemer, J.-J. Schmid, and J. Felblinger. Suppression of MR gradient artefacts on electrophysiological signals based on an adaptive real-time filter with LMS coefficient updates. MAGMA 18:41–50, 2005.

    Article  PubMed  CAS  Google Scholar 

  2. Abi-Abdallah, D., A. S. Drochon, V. Robin, and O. Fokapu. Cardiac and respiratory MRI gating using combined wavelet sub-band decomposition and adaptive filtering. Ann. Biomed. Eng. 35(5):733–743, 2007.

    Article  PubMed  Google Scholar 

  3. Allen, P. J., O. Josephs, and R. Turner. A method for removing imaging artefact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Bonmassar, G., P. L. Purdon, I. P. Jaaskelainen, K. Chiappa, V. Solo, E. N. Brown, and J. W. Belliveau. Motion and ballistocardiogram artefact removal for interleaved recording of EEG and EPs during MRI. Neuroimage 16:1127–1141, 2002.

    Article  PubMed  Google Scholar 

  5. Damji, A. A., R. E. Snyder, D. C. Ellinger, F. X. Witkowki, and P. S. Allen. RF interference suppression in a cardiac synchronization system operating in a high magnetic field NMR imaging system. Magn. Reson. Imaging 6:637–640, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Dimick, R., L. Hedlung, R. Herfkens, E. Fram, and J. Utz. Optimizing electrocardiograph electrode placement for cardiac gated MRI. Invest. Radiol. 22:17–22, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Felblinger, J., J. Slotboom, B. Kreis, B. Jung, and C. Boesch. Restoration of electrophysiological signal distorted by inductive effects of magnetic field gradients during MRI sequences. Magn. Reson. Med. 41:715–721, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer, S. E., S. A. Wickline, and C. H. Lorenz. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn. Reson. Med. 42:361–370, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. Frei, M. G., R. L. Davidchack, and I. Osorio. Least squares acceleration filtering for the estimation of signal derivatives and sharpness at extrema. IEEE Trans. Biomed. Eng. 46(8):971–977, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Goldman, R. I., J. M. Stern, J. Engel, and M. S. Coen. Acquiring simultaneous ECG and functional MRI. Clin. Neurophysiol. 111:1974–1980, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Haykin, S. Adaptive Filter Theory. New Jersey: Prentice-Hall, 2002.

    Google Scholar 

  12. Kerger, K. S., and C. R. Giordano. Biopotential adaptive filtering in an MR environment. In: Proceedings of the SMRM 12th Annual Meeting, Berlin, p. 661, 1992.

  13. Laguna, P., R. Jane, O. Meste, P. W. Poon, P. Caminal, H. Rix, and N. V. Thakor. Adaptive filter for event-related bioelectric signals using an impulse correlated reference input: comparison with signal averaging techniques. IEEE Trans. Biomed. Eng. 39(10):1032–1044, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Larson, G., R. D. White, G. Laub, E. R. McVeigh, D. Li, and O. P. Simonetti. Self-gated cardiac cine MRI. Magn. Reson. Med. 51:93–102, 2004.

    Article  PubMed  Google Scholar 

  15. Laudon, M. K., J. G. Webster, R. Frayne, and T. M. Grist. Minimizing interference from magnetic resonance imagers during electrocardiography. IEEE Trans. Biomed. Eng. 45(2):160–164, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Moore, J. Method of improving the quality of an ECG obtained from a patient undergoing magnetic resonance imaging. US Patent 4991580, 1991.

  17. Rokey, R., R. Wendt, and D. Johnston. Monitoring of acutely ill patients during nuclear magnetic resonance imaging, use of a time varying filter ECG gating device to reduce gradients artefacts. Magn. Reson. Med. 6:240–245, 1985.

    Article  Google Scholar 

  18. Shetty, A. N. Suppression of RF interference in cardiac gated MRI: a simple design. Magn. Reson. Med. 8:84–88, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Sijbers, J., I. Michiels, M. Verhoye, J. van Audekerke, A. van der Linde, and D. van Dyck. Restoration of MR-induced artefacts in simultaneously recorded MR/EEG data. Magn. Reson. Med. 17:1383–1391, 1999.

    CAS  Google Scholar 

  20. Srinivasan, N., M. T. Wong, and S. M. Krishnan. A new phase space analysis algorithm for cardiac arrhythmia detection. EMBC 82–85, 2003.

  21. Van Genderingen, H. R., M. Sprenger, J. W. de Ridder, and A. C. van Rossum. Carbon fiber electrodes and leads electrocardiography during MR imaging. Radiology 171:872, 1989.

    PubMed  Google Scholar 

  22. Wendt, R. E., R. Rockey, G. W. Vick, and A. L. Johnston. Electrocardiographic gating and monitoring in NMR imaging. Magn. Reson. Imaging 6:89–95, 1988.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the Industrial Cluster Policy, Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungjoung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Park, Y., Cho, S. et al. New Cardiac MRI Gating Method Using Event-Synchronous Adaptive Digital Filter. Ann Biomed Eng 37, 2170–2187 (2009). https://doi.org/10.1007/s10439-009-9764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9764-4

Keywords

Navigation