Skip to main content
Log in

Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Berger T. W., M. Baudry, R. D. Brinton, J. S. Liaw, V. Z. Marmarelis, A. Y. Park, B. J. Sheu and A. R. Tanguay. Brain-implantable biomimetic electronics as the next era in neural prosthetics. IEEE Proceedings. 89:993-1012, 2001. doi:10.1109/5.939806.

    Article  CAS  Google Scholar 

  2. Berger T. W., J. L. Eriksson, D. A. Ciarolla and R. J. Sclabassi. Nonlinear systems analysis of the hippocampal perforant path-dentate system. II. Effects of random train stimulation. J. Neurophysiol. 60:1077-1094, 1988.

    Google Scholar 

  3. Burkitt A. N. A review of the integrate-and-fire neuron model: I Homogeneous synaptic input. Biol. Cybern. 95(2):1-19, 2006. doi:10.1007/s00422-006-0068-6.

    Article  PubMed  CAS  Google Scholar 

  4. Burkitt A. N. A review of the integrate-and-fire neuron model: II Inhomogeneous synaptic input and network properties. Biol. Cybern. 95(2):97-112, 2006. doi:10.1007/s00422-006-0082-8.

    Article  PubMed  CAS  Google Scholar 

  5. Chen H. W., L. D. Jacobson and J. P. Gaska. Structural classification of multi-input nonlinear systems. Biol. Cybern. 63(5):341-357, 1990. doi:10.1007/BF00202751.

    Article  PubMed  CAS  Google Scholar 

  6. Crandall W. E. Digital Vision Theory: Boolean Logic Model. Int. J. Neurosci. 56(1-4):39-71, 1991. doi:10.3109/00207459108985405.

    Article  PubMed  CAS  Google Scholar 

  7. Dayan P. and L. F. Abbot. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural System. Cambridge: MIT Press, 2001, 162 pp.

    Google Scholar 

  8. D’yachkov A. G. and V. V. Rykov. The capacity of the Boolean associative memory. IEEE Intern. Conf. Artif. Neural Netw., 1:158-160, 1997.

    Article  Google Scholar 

  9. Farrow C., J. Heidel, J. Maloney and J. Rogers. Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans. Neural Networks. 15(2):348-354, 2004. doi:10.1109/TNN.2004.824262.

    Article  PubMed  Google Scholar 

  10. Gholmieh G., S. H. Courellis, S. Fakheri, E. Cheung, V. Z. Marmarelis, M. Baudry and T. W. Berger. Detection and classification of neurotoxins using a novel short-term plasticity quantification method. Biosens. Bioelectron. 18(12):1467-78, 2003. doi:10.1016/S0956-5663(03)00120-9.

    Article  PubMed  CAS  Google Scholar 

  11. Gholmieh G., S. H. Courellis, V. Z. Marmarelis and T. W. Berger. An efficient method for studying short-term plasticity with random impulse train stimuli. J. Neurosci. Methods 21(2):111-127, 2002. doi:10.1016/S0165-0270(02)00164-4.

    Article  Google Scholar 

  12. Gholmieh G., S. H. Courellis, V. Z. Marmarelis, and T. W. Berger. Detecting CA1 short-term plasticity variations with changes in stimulus intensity and extracellular medium composition. Neurocomputing. 63:465-481, 2005 doi:10.1016/j.neucom.2004.07.001.

    Article  Google Scholar 

  13. Gholmieh G., S. H. Courellis, V. Z. Marmarelis and T. W. Berger. Nonlinear dynamic model of CA1 short-term plasticity using random impulse train stimulation. Ann. Biomed. Eng. 35(5):847-857, 2007. doi:10.1007/s10439-007-9253-6.

    Article  PubMed  Google Scholar 

  14. Makarov V. A., F. Panetsos and O. de Feoo 2005 A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. J Neurosci Methods 144(2):265-279.

    PubMed  Google Scholar 

  15. Marmarelis V. Z. Signal transformation and coding in neural systems. IEEE Trans. Biomedical Engineering. 36:15-24, 1989. doi:10.1109/10.16445.

    Article  PubMed  CAS  Google Scholar 

  16. Marmarelis V. Z. Identification of Nonlinear Biological Systems Using Laguerre Expansions of Kernels. Annals of Biomedical Engineering. 21:574-589, 1993.

    Google Scholar 

  17. Marmarelis V. Z. Nonlinear Dynamic Modeling of Physiological Systems. New York: Wiley Interscience, 2004, 359 pp.

    Google Scholar 

  18. Marmarelis V. Z. and T. W. Berger. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences. 196(1):1-13, 2005. doi:10.1016/j.mbs.2005.04.002.

    Article  PubMed  CAS  Google Scholar 

  19. Marmarelis V. Z. and M.E. Orme. Modeling of neural systems by use of neuronal modes. IEEE Trans. Biomed. Eng. 40:1149-1158, 1993. doi:10.1109/10.245633.

    Article  PubMed  CAS  Google Scholar 

  20. Meunier C., I. Segev. Playing the devil’s advocate: is the Hodgkin-Huxley model useful? Trends Neurosci. 25(11): 558-563, 2002. doi:10.1016/S0166-2236(02)02278-6.

    Article  PubMed  CAS  Google Scholar 

  21. Richardson M. J. E. Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Physical Review E. 76: 021919-1-15, 2007.

    Article  Google Scholar 

  22. Song D., R. H. Chan, V. Z. Marmarelis, R. E. Hampson, S. A. Deadwyler and T. W. Berger. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Trans. Biomed. Eng. 54(6):1053-66, 2007. doi:10.1109/TBME.2007.891948.

    Article  PubMed  Google Scholar 

  23. Zanos T. P., S. H. Courellis, T. W. Berger, R. E. Hampson, S. A. Deadwyler and V. Z. Marmarelis. Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Trans. Neural Systems & Rehab. Eng. 16(4):336-352, 2008. doi:10.1109/TNSRE.2008.926716.

    Article  Google Scholar 

  24. Zanos T. P., S. H. Courellis, R. E. Hampson, S. A. Deadwyler, V. Z. Marmarelis and T. W. Berger. A multi-input modeling approach to quantify hippocampal nonlinear dynamic transformations. IEEE Eng. Medicine Biology Conf. 1:4967-70, 2006. doi:10.1109/IEMBS.2006.260575.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH/NIBIB grant No. P41-EB001978 to the Biomedical Simulations Resource at USC and by the NSF grant No. EEC-0310723 to the Engineering Research Center for Biomimetic Micro-Electronic Systems at USC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros P. Zanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmarelis, V.Z., Zanos, T.P. & Berger, T.W. Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations. Ann Biomed Eng 37, 1654–1667 (2009). https://doi.org/10.1007/s10439-009-9736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9736-8

Keywords

Navigation