Skip to main content

Advertisement

Log in

Automatically Generating Subject-specific Functional Tooth Surfaces Using Virtual Mastication

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

High-accuracy geometrical models of a subject’s mandibular and maxillary teeth are combined with recordings of natural chewing trajectories of the same subject to obtain a subject-specific virtual model of mastication—the virtual masticator. The virtual masticator and a shape-optimization algorithm, which is based on removing collisions occurring between a generic maxillary tooth/teeth and the mandibular antagonists during mastication, is used to automatically reconstruct functional tooth surfaces. The process was tested using a chewing trajectory stemming from recordings made of an individual while eating elastic-type foods, a generic maxillary tooth, and the mandibular second molar of that individual. Comparing the obtained results with the actual tooth, the errors within the occlusal and functional regions of the the right second maxillary molar range between −90 and 200 μm and these errors do not change any more after three chewing cycles. These results indicate that a small number of chewing cycles is sufficient to remove occlusal interferences in the virtual tooth model. Such automatically reconstructed tooth surfaces can provide guidance during the design stage of dental fixed restorations manufactured using computer-aided design and manufacturing (CAD/CAM) systems and provide additional information for the design of dental implants or bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bisler, A., U. Bockholt, and G. Voss. The virtual articulator—applying VR technologies to dentistry. In: Proceedings of the Sixth International Conference on Information Visualisation, 2002.

  2. Bourdiol, P., and L. Mioche. Correlations between functional and occlusal tooth-surface areas and food texture during natural chewing sequences in humans. Arch. Oral Biol. 45: 691–699, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. van Essen, N., I. Anderson, P. Hunter, J. Carman, R. Clarke, and A.J. Pullan. Anatomically based modelling of the human skull and jaw. Cells Tissues Organs 180(1): 44–53, 2005.

    Article  PubMed  Google Scholar 

  4. Every, R. Significance of tooth sharpness for mammalian, especially primate, evolution. Contrib. Primatol. 5: 293–325, 1975.

    PubMed  CAS  Google Scholar 

  5. Foster, K., A. Woda, and M.Peyron. Effect of texture of plastic and elastic model foods on the parameters of mastication. J. Neurophysiol. 95(6): 3469–3479, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. Hatch, J., R. Shinkai, S. Sakai, J. Rugh, and E. Paunovich. Determinants of masticatory performance in dentate adults. Archives of Oral Biology 46(7): 641–648, 2000.

    Article  Google Scholar 

  7. Ichim, I., M. Swain, and J.A. Kieser. Mandibular biomechanics and development of the human chin. J. Dent. Res. 85(7): 638–642, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Julien, K., P. Buschang, G. Throckmorton, and P. Dechow. Normal masticatory performance in young adults and children. Arch. Oral Biol. 41: 69–75, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. Kamegawa, M., M. Nakamura, K. Kitahara, H. Ohtomo, T. Hasegawa, T. Nakakura, and S. Tsutsumi. 3D morphological assessment of occlusal treatment by measuring dental casts with a micro-focus X-ray CT. J. Oral Rehabil. 35(5): 382–389, 2008.

    Article  PubMed  CAS  Google Scholar 

  10. Karlsson, S. Recording of mandibular movements by intraorally placed light emitting diodes. Acta Odontol. Scand. 35(1): 111–117, 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Korioth, T., D. Romilly, and A. Hannam. Three-dimensional finite element stress analysis of the dentate human mandible. Am. J. Phys. Anthropol. 88(1):69–96, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Koseki, M., A. Niitsuma, N. Inou, and K. Maki. Three-dimensional display system of individual mandibular movement. In: Proceedings of The First International Conference on Complex Medical Engineering (CME2005), pp. 249–254, 2005.

  13. Luke, D., and P. Lucas. Chewing efficiency in relation to occlusal and other variations in the natural human dentition. Brit. Dent. J. 159: 401–403, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Maletsky, L., J. Sun, and N. Morton. Accuracy of an optical active-marker system to track the relative motion of rigid bodies. J. Biomech. 40(3): 682–685, 2007.

    Article  PubMed  Google Scholar 

  15. Maruyama, T., K. Higashi, T. Mizumori, S. Miyauchi, and T. Kuroda. Clinical studies on consistency of chewing movement. Chewing path for the same food. J. Osaka Univ. Dent. Sch. 25: 49–61, 1985.

    PubMed  CAS  Google Scholar 

  16. McDermott, I., and R. Roewe. The Hardy chew-in technique: a modified procedure. J. Prosthet. Dent. 48(2): 202–5, 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Mesqui, F., F. Kaeser, and P. Fischer. Real-time, noninvasive recording and three-dimensional display of the functional movements of an arbitrary mandible point. Proc. SPIE 602: 77–84, 1985.

    Google Scholar 

  18. Meyer, F. The generated path technique in reconstruction dentistry, Parts I and II. J. Prosthet. Dent. 9: 354–366, 1959.

    Article  Google Scholar 

  19. Mohamed, S., J. Schmidt, and J. Harrison. Articulators in dental education and practice. J. Prosthet. Dent. 36(3): 319–25, 1976.

    Article  PubMed  CAS  Google Scholar 

  20. Motohashi, N., and T. Kuroda. A 3D computer-aided design system applied to diagnosis and treatment planning in orthodontics and orthognathic surgery. Eur. J. Orthodont. 21(3): 263–274, 1999.

    Article  CAS  Google Scholar 

  21. Murphy, T. The timing and mechanism of the human masticatory stroke. Arch. Oral Biol. 10: 981–993, 1965.

    Article  PubMed  CAS  Google Scholar 

  22. Olthoff, L., J. van der Zel, W. de~Ruiter, S. Vlaar, and F. Bosman. Computer modeling of occlusal surfaces of posterior teeth with the CICERO CAD/CAM system. The J. Prosthet. Dent. 84(2): 154–162, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Omar, S., J. McEwen, and S. Ogston. A test for occlusal function. The value of a masticatory efficiency test in the assessment of occlusal function. J. Orthodont. 14: 85–90, 1987.

    CAS  Google Scholar 

  24. Palin, W.M., and F.J.T. Burke. Trends in indirect dentistry: 8. CAD/CAM technology. Dent. Update 32(10): 566–572, 2005.

    PubMed  Google Scholar 

  25. Pameijer, J., I. Glickman, and F. Roeber. Intraoral occlusal telemetry - III. Tooth contacts in chewing, swallowing and bruxism. J. Periodontol. 40: 253–261, 1969.

    PubMed  CAS  Google Scholar 

  26. Röhrle, O., J. Waddell, K. Foster, H. Saini, and A. Pullan. Using a motion capture system to record dynamic articulation for application in CAD/CAM software. J. Prosthodont. (accepted).

  27. Teaford, M., M. Smith, and M. Ferguson. Development Function and Evolution of Teeth. Cambridge University Press, 2000.

  28. Wiles, A., D. Thompson, and D. Frantz. Accuracy assessment and interpretation for optical tracking systems. Proc. SPIE 5367: 421–432, 2004.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded through the Foundation for Research in Science and Technology (FRST) under Contract Number UOAX0406. The author O.R. would also like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Röhrle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, H., Wadell, J.N., Pullan, A.J. et al. Automatically Generating Subject-specific Functional Tooth Surfaces Using Virtual Mastication. Ann Biomed Eng 37, 1646–1653 (2009). https://doi.org/10.1007/s10439-009-9725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9725-y

Keywords

Navigation