Skip to main content
Log in

Whispering Gallery Mode Biosensors Consisting of Quantum Dot-Embedded Microspheres

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

New methods of biological analyte sensing are needed for development of miniature biosensors that are highly sensitive and require minimal sample preparation. One technique employs optical resonances, known as whispering gallery modes (WGMs), in spherical or cylindrical microstructures. The spectral positions of these resonant modes are very sensitive to the local refractive index and spectral shifts may be used to sense changes in the index. To excite these WGMs and enable remote excitation, quantum dots are embedded in polystyrene microspheres to serve as local light sources. Using a simple continuous wave excitation optical system, these sensors are demonstrated by monitoring the wavelength shift of multiple resonant modes as bulk index of refraction is changed in ethanol–water mixtures. The potential for targeted biosensing is explored through addition of a protein that adsorbs to the microsphere surface, thrombin, and one that does not, bovine serum albumin (BSA). The thrombin produced a spectral shift that was much larger than that due to the bulk index change. The BSA produced a significantly smaller shift that was slightly larger than the expected shift due to bulk index change. Most likely due to the thin, high index layer of quantum dots, microsensor response in all cases demonstrated increased sensitivity over theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arnold, S., S. Holler, N. L. Goddard and G. Griffel. Cavity-mode selection in spontaneous emission from oriented molecules in a microparticle. Opt. Lett. 22:1452-1454, 1997. doi:10.1364/OL.22.001452

    Article  CAS  PubMed  Google Scholar 

  2. Arnold, S., M. Khoshsima, I. Teraoka, S. Holler and F. Vollmer. Shift of whispering-gallery modes in microspheres by protein adsorption. Opt. Lett. 28:272-274, 2003. doi:10.1364/OL.28.000272

    Article  CAS  PubMed  Google Scholar 

  3. Bohren, C. F., and D. R. Huffman. Absorption and Scattering of Light by Small Particles. New York: Wiley, xiv, 530 p., 1998.

  4. Born, M. and E. Wolf. Principles of Optics. New York: Pergamon, 1980.

    Google Scholar 

  5. Chan, W. C. W. and S. M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281:2016–2018, 1998. doi:10.1126/science.281.5385.2016

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, M. M. C., G. Cuda, Y. L. Bunimovich, M. Gaspari, J. R. Heath, H. D. Hill, C. A. Mirkin, A. J. Nijdam, R. Terracciano, T. Thundat and M. Ferrari. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10:11-19, 2006. doi:10.1016/j.cbpa.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  7. Chylek, P., J. T. Kiehl and M. K. W. Ko. Narrow resonance structure in mie scattering characteristics. Appl. Opt. 17:3019-3021, 1978. doi:10.1364/AO.17.003019

    Article  CAS  PubMed  Google Scholar 

  8. Erickson, D., S. Mandal, A. H. J. Yang and B. Cordovez. Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid. Nanofluid. 4:33-52, 2008. doi:10.1007/s10404-007-0198-8

    Article  CAS  PubMed  Google Scholar 

  9. Fan, X., P. Palinginis, S. Lacey, H. Wang and M. C. Lonergan. Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high q factors. Opt. Lett. 25:1600-1602, 2000. doi:10.1364/OL.25.001600

    Article  CAS  PubMed  Google Scholar 

  10. Francois, A., and M. Himmelhaus. Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl. Phys. Lett. 92:141107, 2008.

    Article  Google Scholar 

  11. Francois, A., and M. Himmelhaus. Whispering gallery mode biosensor operated in the stimulated emission regime. Appl. Phys. Lett. 94:031101, 2009.

    Article  Google Scholar 

  12. Gomez, D. E., I. Pastoriza-Santos and P. Mulvaney. Tunable whispering gallery mode emission from quantum-dot-doped microspheres. Small. 1:238-241, 2005. doi:10.1002/smll.200400019

    Article  CAS  PubMed  Google Scholar 

  13. Hanumegowda, N. M., C. J. Stica, B. C. Patel, I. White, and X. Fan. Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 87:201107, 2005.

    Article  Google Scholar 

  14. Hanumegowda, N. M., I. M. White and X. D. Fan. Aqueous mercuric ion detection with microsphere optical ring resonator sensors. Sens. Actuators B Chem. 120:207-212, 2006. doi:10.1016/j.snb.2006.02.011

    Article  Google Scholar 

  15. Hanumegowda, N. M., I. M. White, H. Oveys and X. Fan. Label-free protease sensors based on optical microsphere resonators. Sensor Lett. 3:1-5, 2005. doi:10.1166/sl.2005.044

    Article  Google Scholar 

  16. Hood, L., J. R. Heath, M. E. Phelps and B. Y. Lin. Systems biology and new technologies enable predictive and preventative medicine. Science. 306:640-643, 2004. doi:10.1126/science.1104635

    Article  CAS  PubMed  Google Scholar 

  17. Jain, K. K. The role of nanobiotechnology in drug discovery. Drug Discov. Today 10:1435-1442, 2005. doi:10.1016/S1359-6446(05)03573-7

    Article  CAS  PubMed  Google Scholar 

  18. Johnson, B. R. Theory of morphology-dependent resonances—shape resonances and width formulas. J. Opt. Soc. Am. A 10:343-352, 1993.

    Article  Google Scholar 

  19. Lam, C. C., P. T. Leung and K. Young. Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering. J. Opt. Soc. Am. B 9:1585-1592, 1992. doi:10.1364/JOSAB.9.001585

    Article  Google Scholar 

  20. Mie, G. Beitrage zur optik truber medien speziell kolloidaler metallosungen. Ann. Phys. 25:377-445, 1908. doi:10.1002/andp.19083300302

    Article  CAS  Google Scholar 

  21. Moller, B., U. Woggon and M. V. Artemyev. Photons in coupled microsphere resonators. J. Opt. A 8:S113-S121, 2006. doi:10.1088/1464-4258/8/4/S10

    Google Scholar 

  22. Morrish, D., X. S. Gan and M. Gu. Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser. Opt. Express 12:4198-4202, 2004. doi:10.1364/OPEX.12.004198

    Article  PubMed  Google Scholar 

  23. Noto, M., D. Keng, I. Teraoka and S. Arnold. Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes. Biophys. J. 92:4466-4472, 2007. doi:10.1529/biophysj.106.103200

    Article  CAS  PubMed  Google Scholar 

  24. Nuhiji, E. and P. Mulvaney. Detection of unlabeled oligonucleotide targets using whispering gallery modes in single, fluorescent microspheres. Small. 3:1408-1414, 2007. doi:10.1002/smll.200600676

    Article  CAS  PubMed  Google Scholar 

  25. Pang, S., R. E. Beckham, and K. E. Meissner. Quantum dot-embedded microspheres for remote refractive index sensing. Appl. Phys. Lett. 92:221108, 2008.

    Article  PubMed  Google Scholar 

  26. Peng, Z. A. and X. G. Peng. Formation of high-quality cdte, cdse, and cds nanocrystals using cdo as precursor. J. Am. Chem. Soc. 123:183-184, 2001. doi:10.1021/ja003633m

    Article  CAS  PubMed  Google Scholar 

  27. Rayleigh, L. The problem of the whispering gallery. Philos. Mag. 20:1001-1004, 1910.

    Google Scholar 

  28. Teraoka, I. and S. Arnold. Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer. J. Opt. Soc. Am. B. 23:1434-1441, 2006. doi:10.1364/JOSAB.23.001434

    Article  CAS  Google Scholar 

  29. Teraoka, I. and S. Arnold. Theory of resonance shifts in te and tm whispering gallery modes by nonradial perturbations for sensing applications. J. Opt. Soc. Am. B. 23:1381-1389, 2006. doi:10.1364/JOSAB.23.001381

    Article  CAS  Google Scholar 

  30. Teraoka, I. and S. Arnold. Whispering-gallery modes in a microsphere coated with a high-refractive index layer: Polarization-dependent sensitivity enhancement of the resonance-shift and te-tm resonance matching. J. Opt. Soc. Am. B 24:653-659, 2007. doi:10.1364/JOSAB.24.000653

    Article  CAS  Google Scholar 

  31. Teraoka, I., S. Arnold and F. Vollmer. Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium. J. Opt. Soc. Am. B 20:1937-1946, 2003. doi:10.1364/JOSAB.20.001937

    Article  CAS  Google Scholar 

  32. Topolancik, J. and F. Vollmer. Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities. Biophys. J. 92:2223-2229, 2007. doi:10.1529/biophysj.106.098806

    Article  CAS  PubMed  Google Scholar 

  33. van de Hulst, H. C. Light Scattering by Small Particles. New York: Wiley, 1981.

    Google Scholar 

  34. Vollmer, F., S. Arnold, D. Braun, I. Teroka and A. Libchaber. Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. Biophys. J. 85:1974-1979, 2003. doi:10.1016/S0006-3495(03)74625-6

    Article  CAS  PubMed  Google Scholar 

  35. Vollmer, F., D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka and S. Arnold. Protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 80:4057-4059, 2002. doi:10.1063/1.1482797

    Article  CAS  Google Scholar 

  36. Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21:1887-1892, 2006. doi:10.1016/j.bios.2005.10.027

    Article  CAS  PubMed  Google Scholar 

  37. Weller, A., F. C. Liu, R. Dahint and M. Himmelhaus. Whispering gallery mode biosensors in the low-q limit. Appl. Phys. B 90:561-567, 2008. doi:10.1007/s00340-007-2893-2

    Article  CAS  Google Scholar 

  38. White, I. M., N. M. Hanumegowda and X. Fan. Subfemtomole detection of small molecules with microsphere sensors. Opt. Lett. 30:3189-3191, 2005. doi:10.1364/OL.30.003189

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L. M., Y. X. Wang, F. J. Zhang and R. O. Claus. Observation of whispering-gallery and directional resonant laser emission in ellipsoidal microcavities. J. Opt. Soc. Am. B 23:1793-1800, 2006. doi:10.1364/JOSAB.23.001793

    Article  CAS  Google Scholar 

  40. Zhu, H. Y., J. D. Suter, I. M. White and X. D. Fan. Aptamer based microsphere biosensor for thrombin detection. Sensors. 6:785-795, 2006. doi:10.3390/s6080785

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ameet Juriani for preparing the CdSe/ZnS quantum dots. Hope Beier acknowledges the support of the National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenith E. Meissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beier, H.T., Coté, G.L. & Meissner, K.E. Whispering Gallery Mode Biosensors Consisting of Quantum Dot-Embedded Microspheres. Ann Biomed Eng 37, 1974–1983 (2009). https://doi.org/10.1007/s10439-009-9713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9713-2

Keywords

Navigation