Skip to main content
Log in

Live Cell Labeling of Glial Progenitor Cells Using Targeted Quantum Dots

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study describes the development of targeted quantum dots (T-QDs) as biomarkers for the labeling of glial progenitor cells (GPCs) that over express platelet derived growth factor (PDGF) and its receptor PDGFR (GPCPDGF). PDGFR plays a critical role in glioma development and growth, and is also known to affect multiple biological processes such as cell migration and embryonic development. T-QDs were developed using streptavidin-conjugated quantum dots (S-QDs) with biotinylated antibodies and utilized to label the intracellular and extracellular domains of live, cultured GPCPDGF cells via lipofection with cationic liposomes. Confocal studies illustrate successful intracellular and extracellular targeted labeling within live cells that does not appear to impact upstream PDGFR dynamics during real-time signaling events. Further, T-QDs were nontoxic to GPCPDGF cells, and did not alter cell viability or proliferation over the course of 6 days. These results raise new applications for T-QDs as ultra sensitive agents for imaging and tracking of protein populations within live cells, which that will enable future mechanistic study of oncogenic signaling events in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5

Similar content being viewed by others

References

  1. Ballou B., C.B. Lagerholm, L.A. Ernst, M.P. Bruchez and A.S. Waggoner. Non invasive imaging of quantum dots in mice. Bioconjugate Chem. 15: 79-86, 2004.

    Article  CAS  Google Scholar 

  2. Barber K., R.R. Mala, M.P. Lambert, R. Qiu, R.C. MacDonald and W.L. Klein. Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci. Lett. 207:17–20, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Chalmers, N. I., R. J. Palmer Jr., L. Du-Thumm, R. Sullivan, W. Shi, and P. E. Kolenbrander. Use of quantum dot luminescent probes to achieve single cell resolution of human oral bacteria in biofilms. Appl. Environ. Microbiol. 73:630–636, 2007.

    Article  CAS  PubMed  Google Scholar 

  4. Dai C., J. Celestino, Y. Okada, D.N. Louis, G.N. Fuller and E.C. Holland. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 15:1913-1925, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Dai C. and E.C. Holland. Astrocyte differentiation states and glioma formation. Cancer J. 9: 72-81, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Dai C., Y. Lyustikman, A. Shih, X. Hu, G.N. Fuller, M. Rosenbulm and E.C. Holland. The characterstic of astrocytomas and oligodendrogliomas are caused by two distinct and interchangable signaling formats. Neoplasia. 7: 397-406, 2005.

    Article  CAS  PubMed  Google Scholar 

  7. Derfus A.M., W.C.W.Chan and S.N.Bhatia. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16: 961-966, 2004.

    Article  CAS  Google Scholar 

  8. Derfus A.M., W.C.W. Chan and S.N. Bhatia. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4: 11-18, 2004.

    Article  CAS  Google Scholar 

  9. Dudu V., M. Ramcharan, L. Gilchrist, E.C. Holland and M.Vazquez. Liposome delivery of quantum dot to the cytosol of live cell. J Nanosci. Nanotechnol. 8: 2293-2300, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Gao X, Y. Cui, R.M.Leveson, L.W.K. Chung and S. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22: 969-976, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Heldin C.H. and B. Westermark. Mechanism of action and in vivo role of platelet derived growth factor. Physiol. Rev. 79:1283-1316, (1999).

    CAS  PubMed  Google Scholar 

  12. Holland E.C., Y. Li, J. Celestino, C. Dai, L. Schaefer, R. Sawaya and G.N. Fuller. Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am. J. Pathol. 157:1031-1037, 2000.

    CAS  PubMed  Google Scholar 

  13. Ipe I.B., A.Shukla, H.Lu, B.Zou, H. Rehage and C.M. Niemeyer. Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. Chem. Phys. Chem. 7: 1112-1118, 2006.

    CAS  PubMed  Google Scholar 

  14. Jaiswal J.K., H. Mattoussi, J.M. Mauro and S.M. Simon. Long term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21: 47-51, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. Jaiswal J.K. and S.M Simon. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol. 14: 497-504, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Jones A.V. and N.C.P. Cross. Oncogenic derivatives of platelet-derived growth factor receptors. Cell. Mol. Life Sci., 61:2912-2923, 2004.

    Article  CAS  PubMed  Google Scholar 

  17. Jovin T.M. Quantum dots finally come of age. Nat. Biotechnol. 21:32-33, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Lasic D.D. Liposomes: From Physics to Applications. Elsevier Science Publishers BV, the Netherlands, 1993.

    Google Scholar 

  19. Liu H.Y. and T.Q. Vu. Identification of quantum dot bioconjugates and cellular protein co-localization by hybrid gel blotting. Nano Lett. 7: 1044-1049, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Lokker N.A., C.M. Sullivan, S.J. Hollenbach, M.A Israel and N.A. Giese. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands play a role in development of brain tumors. Cancer Res. 62: 3729-3735, 2002.

    CAS  PubMed  Google Scholar 

  21. Rajan S.S. and T.Q. Vu. Quantum Dots Monitor TrkA Receptor Dynamics in the Interior of Neural PC12 Cells. Nano Lett. 6:2049-2059, 2006.

    Article  CAS  Google Scholar 

  22. Shih, A.H. and E.C. Holland. Platelet derived growth factor (PDGF) and glial tumorigenesis. Can. Lett. 232: 139-147, 2006.

    Article  CAS  Google Scholar 

  23. Vu, T. Q., S. S. Rajan, and H. Y. Liu. Ligand bound quantum dots for intracellular imaging of neural receptors. In: Proc. SPIE, Colloidal Quantum Dots for Biomedical Applications, 2007, p. 6448.

  24. Yu J., C. Ustach and H.R.C. Kim. Platelet derived growth factor signaling and human cancer. J. Biochem. Mol. Biol. 36: 49-59, 2003.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NSF CBET 0428573, NIH R21 CA118255, and PSC-CUNY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Vazquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Detailed experimental methods and MTT assay curve (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabharwal, N., Holland, E.C. & Vazquez, M. Live Cell Labeling of Glial Progenitor Cells Using Targeted Quantum Dots. Ann Biomed Eng 37, 1967–1973 (2009). https://doi.org/10.1007/s10439-009-9703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9703-4

Keywords

Navigation