Skip to main content
Log in

Development of Quantum Dot-Mediated Fluorescence Thermometry for Thermal Therapies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As thermal therapies are frequently employed for management of tumors in various organs, there are growing demands for reliable and accurate intraoperative monitoring techniques of the thermal lesion. However, current monitoring techniques have limited accuracy, accessibility and are not capable of monitoring the thermal lesion in real-time during the procedure. In the present study, quantum dot-mediated fluorescence thermometry was developed and its performance was characterized to demonstrate the feasibility of spatiotemporal monitoring of thermal lesions. First, the temperature dependency of two different types of CdTe/ZnS quantum dots (QDs) were characterized in a temperature range relevant to hyperthermic therapies, and a temperature–intensity relationship was established for each QD. The spatial and temporal resolutions of the system were characterized by exposing QDs to a pre-determined spatial temperature gradient, and by monitoring the spatiotemporal temperature during gold nanoshell-mediated heating. The results demonstrated that QD-mediated thermometry is capable of measuring spatiotemporally varying temperature fields relevant for hyperthermic thermal therapies. Its implication for intraoperative image-guidance of thermal therapy was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 22:47-52, 2004. doi:10.1038/nbt927

    Article  PubMed  CAS  Google Scholar 

  2. Boss, A., H. Graf, B. Muller-Bierl, S. Clasen, D. Schmidt, P. L. Pereira, and F. Schick. Magnetic susceptibiity effects on the accuracy of MR temperature monitoring by the proton resonance frequency method. Journal of Magnetic Resonnace Imaging 22:813-820, 2005. doi:10.1002/jmri.20438

    Article  PubMed  Google Scholar 

  3. Butts, K., B. L. Daniel, L. Chen, D. M. Bouley, J. Wansapura, S. E. Maier, C. Dumoulin, and R. Watkins. Diffusion-weighted MRI after cryosurgery of the canine prostate. J. Magn. Reson. Imaging 17:131-135, 2003. doi:10.1002/jmri.10227

    Article  PubMed  Google Scholar 

  4. Gao, X., Y. Gui, R. M. Levenson, L. W. K. Chung, and S. Nie. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22:969-976, 2004. doi:10.1038/nbt994

    Article  PubMed  CAS  Google Scholar 

  5. Gellermann, J., B. Hilderbrandt, R. Issels, H. Ganter, W. Wlodarczyk, V. Budach, R. Felix, P. Tunn, P. Reichardt, and P. Wust. Noninvasive magnetic resonance thermography of soft tissue sarcomas during reginal hyperthermia: Correlation with response and direct thermometry. Cancer 107:1373-1382, 2006. doi:10.1002/cncr.22114

    Article  PubMed  Google Scholar 

  6. He, X. and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355-421, 2003. doi:10.1615/CritRevBiomedEng.v31.i56.10

    Article  PubMed  Google Scholar 

  7. Hirsch, L. R., R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549-13554, 2003. doi:10.1073/pnas.2232479100

    Article  PubMed  CAS  Google Scholar 

  8. Jacobs, M. A., E. H. Herskovits, and H. S. Kim. Uterine fibroids: diffusion weighted MR imaging for monitoring therapy with focused ultrasound surgery - preliminary study. Radiology 236:196-203, 2005. doi:10.1148/radiol.2361040312

    Article  PubMed  Google Scholar 

  9. Jolesz, F. A., A. R. Bleier, P. Jakab, P. W. Ruenzel, K. Huttl, and G. J. Jako. MR imaging of laser-tissue interactions. Radiology 168:245-253, 1988.

    Google Scholar 

  10. Jordan, A., R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225:118-126, 2001. doi:10.1016/S0304-8853(00)01239-7

    Article  CAS  Google Scholar 

  11. Jordan, A., R. Scholz, P. Wust, H. Fahling, and R. Felix. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magentic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413-419, 1999. doi:10.1016/S0304-8853(99)00088-8

    Article  CAS  Google Scholar 

  12. Kalambur, V. S., B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology 16:1221-1233, 2005. doi:10.1088/0957-4484/16/8/041

    Article  CAS  Google Scholar 

  13. Kam, N. W. S., M. O’Connell, J. A. Wisdom, and H. Dai. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. PNAS 102:11600-11605, 2005. doi:10.1073/pnas.0502680102

    Article  PubMed  CAS  Google Scholar 

  14. Kim, S., Y. T. Lim, E. G. Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, L. H. Cohn, M. G. Bawendi, and J. V. Frangioni. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22:93-97, 2004. doi:10.1038/nbt920

    Article  Google Scholar 

  15. Liu, Y. -., Y. Sun, P. Vernier, C. -. Liang, S. Chong, and M. Gundersen. pH-Sensitivit photoluminescence of CdSe/ZnSe/ZnS qunatum dots in human ovarian cancer cells. J Phys Chem C 111:2872-2878, 2007. doi:10.1021/jp0654718

    Article  CAS  Google Scholar 

  16. Martin, D. and C. Algora. Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling. Semiconductor Science and Technolgy 19:1040-1052, 2004. doi:10.1088/0268-1242/19/8/015

    Article  CAS  Google Scholar 

  17. Maucevic, A., M. Peller, L. Ruprecht, D. Berg, L. Fend, R. Sroka, H. J. Reulen, M. Reiser, J. C. Tonn, and F. W. Kreth. Image guided interstitial laser thermotherapy: a canine model evaluated by magnetic resonance imaging and quantitative authoadiography. Acta Neurochirurigica 147:175-186, 2004. doi:10.1007/s00701-004-0409-y

    Article  Google Scholar 

  18. Michalet, X., F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S.S.Gambhir, and S. Weiss. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538-544, 2005. doi:10.1126/science.1104274

    Article  PubMed  CAS  Google Scholar 

  19. Morgan, N. Y., S. English, W. Chen, V. Chernomordik, A. Russo, P. D. Smith, and A. Gandjbakhche. Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad. Radiol. 12:313-323, 2005. doi:10.1016/j.acra.2004.04.023

    Article  PubMed  Google Scholar 

  20. Oldenberg, S., R. Averitt, S. Westcott, and N. Halas. Nanoengineering of optical resonances. Chem Phys Lett 28:243-247, 1998. doi:10.1016/S0009-2614(98)00277-2

    Article  Google Scholar 

  21. Olkhovets, A., R., Hsu, A. Lipovskii, and F. W. Wise. Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Phys. Rev. Lett. 81:3539–3542, 1998. doi:10.1103/PhysRevLett.81.3539

    Article  CAS  Google Scholar 

  22. Park, S. and J. A. Cadeddu. Outcomes of radiofrequency ablation for kidney cancer. Cancer Control 14:205-210, 2007.

    PubMed  Google Scholar 

  23. Parker, D. L., V. Smith, P. Sheldon, L. E. Crooks, and L. Fussel. Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys. 10:321-325, 1983. doi:10.1118/1.595307

    Article  PubMed  CAS  Google Scholar 

  24. Schwartz, A., L. Wang, E. Early, A. Giagalas, Y. Zhang, G. E. Marti, and R. F. Vogt. Quantitating fluorescence intensity from fluorophore: the definition of MESF assignment. J Res Natl Inst Stand Technol 107:83-91, 2002.

    CAS  Google Scholar 

  25. Stern, J. M., J. L. Stanfield, W. Kabbani, J. T. Hsieh, and J. A. Cadeddu. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 179:748-753, 2007. doi:10.1016/j.juro.2007.09.018

    Article  PubMed  Google Scholar 

  26. Sun, Y., Y. -. Liu, P. Vernier, C. -. Liang, S. Chong, L. Marcu, and M. Gundersen. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells. Nanotechnology 17:4469-4476, 2006. doi:10.1088/0957-4484/17/17/031

    Article  Google Scholar 

  27. Svanberg, S. Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications. Berlin: Springer, 2004.

  28. Walker, G. W., V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. Nocera. Quantum-dot optical temperature probes. Appl. Phys. Lett. 83:3555-3557, 2003. doi:10.1063/1.1620686

    Article  CAS  Google Scholar 

  29. Wang, C.-L., K. Y. Teo, and B. Han. An amino acid adjuvant to augment cryoinjury of MCF-7 breast cancer cells. Cryobiology 57:52–59, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, S., S. Westcott, and W. Chen. Nanoparticle luminescene thermometry. J Phys Chem B 106:11203-11209, 2002. doi:10.1021/jp026445m

    Article  CAS  Google Scholar 

  31. Weidensteiner, C., N. Kerioui, B. Quesson, B. D. de Senneville, H. Trillaud, and C. T. Moonen. Stability of real-time MR temperature mapping in healthy and diseased human liver. J. Magn. Reson. Imaging 19:438-446, 2004. doi:10.1002/jmri.20019

    Article  PubMed  Google Scholar 

  32. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316-317, 2001. doi:10.1038/86684

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, X. B., J. H. Ryou, R. D. Dupuis, G. Walter, and N. Holonyak. Temperature-dependent luminescence of InP quantum dots coupled with an InGaP quantum well and of InP quantum dots in a qunatum well. Appl. Phys. Lett. 87:201110, 2005. doi:10.1063/1.2132529

    Google Scholar 

Download references

Acknowledgments

This study is in part upon work supported by the Texas Advanced Research Program under Grant No. 003656-0005-2006 and UT Southwestern Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumsoo Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B., Hanson, W.L., Bensalah, K. et al. Development of Quantum Dot-Mediated Fluorescence Thermometry for Thermal Therapies. Ann Biomed Eng 37, 1230–1239 (2009). https://doi.org/10.1007/s10439-009-9681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9681-6

Keywords

Navigation