Skip to main content
Log in

Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biofilms are highly organized structures coordinately formed by multiple species of bacteria. Quorum sensing (QS) is one cell–cell communication mechanism that is used by bacteria during biofilm formation. Biofilm formation is widely acknowledged to occur through a sequence of spatially and temporally regulated colonization events. While several mathematical models exist for describing biofilm development, these have been developed for open systems and are not applicable to closed systems where biofilm development and hydrodynamics are interlinked. Here, we report the development of a mathematical model describing QS and biofilm formation in a closed system such as a microfluidic channel. The model takes into account the effect of the external environment viz the mass and momentum transport in the microfluidic channel on QS and biofilm development. Model predictions of biofilm thickness were verified experimentally by developing Pseudomonas aeruginosa PA14 biofilms in microfluidic chambers and reflect the interplay between the dynamics of biofilm community development, mass transport, and hydrodynamics. Our QS model is expected to guide the design of experiments in closed systems to address spatio-temporal aspects of QS in biofilm development and can lead to novel approaches for controlling biofilm formation through disruption of QS spatio-temporal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Caiazza, N.C. and G.A. O’Toole. SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14. J Bacteriol 186: 4476-4485 (2004). doi:10.1128/JB.186.14.4476-4485.2004.

    Article  PubMed  CAS  Google Scholar 

  2. Characklis, W. G. in Biofilms. (eds. W. G. Characklis & K. C. Marshall) 523–584 (Wiley, New York; 1990).

    Google Scholar 

  3. Chopp, D.L., M.J. Kirisits, B. Moran and M.R. Parsek. A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29: 339-346 (2002). doi:10.1038/sj.jim.7000316.

    Article  PubMed  CAS  Google Scholar 

  4. Chopp, D.L., M.J. Kirisits, B. Moran and M.R. Parsek. The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65: 1053-1079 (2003). doi:10.1016/S0092-8240(03)00057-0.

    Article  PubMed  CAS  Google Scholar 

  5. Costerton, J.W., K.-J. Cheng, G.G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta and T.J. Marrie. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41: 435–464 (1987). doi:10.1146/annurev.mi.41.100187.002251.

    Article  PubMed  CAS  Google Scholar 

  6. Costerton, J.W., P.S. Stewart and E.P. Greenberg. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322 (1999). doi:10.1126/science.284.5418.1318.

    Article  PubMed  CAS  Google Scholar 

  7. Cvikovitch, D.G., Y.H. Li and R.P. Ellen. Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest 112: 1626-1632 (2003).

    Google Scholar 

  8. Dockery, J.D. and J.P. Keener. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bulletin of Mathematical Biology 63: 95-116 (2001). doi:10.1006/bulm.2000.0205.

    Article  PubMed  CAS  Google Scholar 

  9. Eguía, E., A. Trueba, A. Girón, B. Río-Calonge, F. Otero and C. Bielva. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent. Biofouling 23: 231-247 (2007). doi:10.1080/08927010701306740.

    Article  PubMed  Google Scholar 

  10. Farinas, J., A.W. Chow and H.G. Wada. A microfluidic device for measuring cellular membrane potential. Anal Biochem 295: 138-142 (2001). doi:10.1006/abio.2001.5202.

    Article  PubMed  CAS  Google Scholar 

  11. Gill, R.K., S. Saksena, S. Tyagi, W.A. Alrefai, J. Malakooti, Z. Sarwar, J.R. Turner, K. Ramaswamy and P.K. Dudeja. Serotonin inhibits Na +/H + exchange activity via 5-HT4 receptors and activation of PKC alpha in human intestinal epithelial cells. Gastroenterology 128: 962-974 (2005). doi:10.1053/j.gastro.2005.02.011.

    Article  PubMed  CAS  Google Scholar 

  12. Gonzalez Barrios, A.F., R. Zuo, Y. Hashimoto, L. Yang, W.E. Bentley and T.K. Wood. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188: 305-316 (2006). doi:10.1128/JB.188.1.305-316.2006.

    Article  PubMed  Google Scholar 

  13. Goodman, A.L., B. Kulasekara, A. Rietsch, D. Boyd, R.S. Smith and S. Lory. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745-754 (2004). doi:10.1016/j.devcel.2004.08.020.

    Article  PubMed  CAS  Google Scholar 

  14. Horn, H., H. Reiff and E. Morgenroth. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81: 607-617 (2003). doi:10.1002/bit.10503.

    Article  PubMed  CAS  Google Scholar 

  15. Kakac, S., R.K. Shah and W. Aung. Handbook of Single-Phase Convective Heat Transfer. Vol. New York: John Wiley & Sons, 1987.

    Google Scholar 

  16. Lee, J., T. Bansal, A. Jayaraman, W.E. Bentley and T.K. Wood. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-Hydroxyindole and stimulated by isatin. Appl Environ Microbiol 73: 4100-4109 (2007). doi:10.1128/AEM.00360-07.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis, K. Riddle of biofilm resistance. Antimicrob Agents Chemother 45: 999-1007 (2001). doi:10.1128/AAC.45.4.999-1007.2001.

    Article  PubMed  CAS  Google Scholar 

  18. Mah, T.F., B. Pitts, B. Pellock, G.C. Walker, P.S. Stewart and G.A. O’Toole. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306-310 (2003). doi:10.1038/nature02122.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell, P. Microfluidics–downsizing large-scale biology. Nat Biotechnol 19: 717-721 (2001). doi:10.1038/90754.

    Article  PubMed  CAS  Google Scholar 

  20. Parsek, M.R. and E.P. Greenberg. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27-33 (2005). doi:10.1016/j.tim.2004.11.007.

    Article  PubMed  CAS  Google Scholar 

  21. Patel, A., G. Nakhla and J. Zhu. Detachment of multi species biofilm in circulating fluidized bed bioreactor. Biotechnol Bioeng 92: 427-437 (2005). doi:10.1002/bit.20603.

    Article  PubMed  CAS  Google Scholar 

  22. Polson, N.A. and M.A. Hayes. Microfluidics: controlling fluids in small places. Anal Chem 73: 312A-319A (2001). doi:10.1021/ac0124585.

    Article  PubMed  CAS  Google Scholar 

  23. Rahme, L.G., E.J. Stevens, S.F. Wolfort, J. Shao, R.G. Tompkins and F.M. Ausubel. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902 (1995). doi:10.1126/science.7604262.

    Article  PubMed  CAS  Google Scholar 

  24. Rasmussen, K. and Z. Lewandowski. Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59: 302-309 (1998). doi:10.1002/(SICI)1097-0290(19980805)59:3<302::AID-BIT6>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  25. Taga, M.E. and B.L. Bassler. Chemical communication among bacteria. Proc Natl Acad Sci 100: 14549-14554 (2003). doi:10.1073/pnas.1934514100.

    Article  PubMed  CAS  Google Scholar 

  26. Viretta, A.U. and M. Fussenegger. Modeling the quorum sensing regulatory network of human- pathogenic Pseudomonas aeruginosa. Biotechnology Progress 20: 670-678 (2004). doi:10.1021/bp034323l.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, J. On-chip enzymatic assays. Electrophoresis 23: 713-718 (2002). doi:10.1002/1522-2683(200203)23:5<713::AID-ELPS713>3.0.CO;2-7.

    Article  PubMed  CAS  Google Scholar 

  28. Ward, J.P., J.R. King, A.J. Koerber, J.M. Croft, R.E. Sockett and P. Williams. Early development and quorum sensing in bacterial biofilms. Journal of Mathematical Biology 47: 23-55 (2003).

    PubMed  Google Scholar 

  29. Ward, J.P., J.R. King, A.J. Koerber, P. Williams, J.M. Croft and R.E. Sockett. Mathematical modelling of quorum sensing in bacteria. Ima Journal of Mathematics Applied in Medicine and Biology 18: 263-292 (2001). doi:10.1093/imammb/18.3.263.

    Article  PubMed  CAS  Google Scholar 

  30. Waters, C.M. and B.L. Bassler. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319-346 (2005). doi:10.1146/annurev.cellbio.21.012704.131001.

    Article  PubMed  CAS  Google Scholar 

  31. Watnick, P. and R. Kolter. Biofilm, city of microbes. J Bacteriol 182: 2675-2679 (2000). doi:10.1128/JB.182.10.2675-2679.2000.

    Article  PubMed  CAS  Google Scholar 

  32. Winans, S.C. and B.L. Bassler. Mob psychology. J Bacteriol 184: 873-883 (2002). doi:10.1128/jb.184.4.873-883.2002.

    Article  PubMed  CAS  Google Scholar 

  33. Xia, Y.N. and G.M. Whitesides. Soft lithography. Annual Review of Materials Science 28: 153-184 (1998). doi:10.1146/annurev.matsci.28.1.153.

    Article  CAS  Google Scholar 

  34. Xu, K.D., P.S. Stewart, F. Xia, C.T. Huang and G.A. McFeters. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64: 4035-4039 (1998).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harihara Baskaran.

Additional information

Vijay Janakiraman and Derek Englert contributed equally to this study. Arul Jayaraman and Harihara Baskaran contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janakiraman, V., Englert, D., Jayaraman, A. et al. Modeling Growth and Quorum Sensing in Biofilms Grown in Microfluidic Chambers. Ann Biomed Eng 37, 1206–1216 (2009). https://doi.org/10.1007/s10439-009-9671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9671-8

Keywords

Navigation