Skip to main content

Advertisement

Log in

Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A broad array of nanomaterials is available for use as contrast agents for molecular imaging and drug delivery. Due to the lack of endogenous background signal in vivo and the high NMR sensitivity of the 19F atom, liquid perfluorocarbon nanoemulsions make ideal agents for cellular and magnetic resonance molecular imaging. The perfluorocarbon core material is surrounded by a lipid monolayer which can be functionalized with a variety of agents including targeting ligands, imaging agents and drugs either individually or in combination. Multiple copies of targeting ligands (∼20–40 monoclonal antibodies or 200–400 small molecule ligands) serve to enhance avidity through multivalent interactions while the composition of the particle’s perfluorocarbon core results in high local concentrations of 19F. Additionally, lipophilic drugs contained within molecularly targeted nanoemulsions can result in contact facilitated drug delivery to target cells. Ultimately, the dual use of perfluorocarbon nanoparticles for both site targeted drug delivery and molecular imaging may provide both imaging of disease states as well as conclusive evidence that drug delivery is localized to the area of interest. This review will focus on liquid perfluorocarbon nanoparticles as 19F molecular imaging agents and for targeted drug delivery in cancer and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ahrens E. T., M. Feili-Hariri, H. Xu, G. Genove, P. A. Morel. 2003 Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo mr imaging. Magn. Reson. Med. 49:1006–1013. doi:10.1002/mrm.10465

    Article  CAS  PubMed  Google Scholar 

  2. Ahrens E. T., R. Flores, H. Xu, P. A. Morel 2005 In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23:983–987. doi:10.1038/nbt1121

    Article  CAS  PubMed  Google Scholar 

  3. Brown J. J., J. R. Duncan, J. P. Heiken, D. M. Balfe, A. P. Corr, S. A. Mirowitz, S. S. Eilenberg, J. K. Lee 1991. Perfluoroctylbromide as a gastrointestinal contrast agent for mr imaging: use with and without glucagon. Radiology 181:455–460

    CAS  PubMed  Google Scholar 

  4. Bulte J. W., D. L. Kraitchman 2004. Monitoring cell therapy using iron oxide mr contrast agents. Curr. Pharm. Biotechnol. 5:567–584. doi:10.2174/1389201043376526

    Article  CAS  PubMed  Google Scholar 

  5. Caruthers S. D., A. M. Neubauer, F. D. Hockett, R. Lamerichs, P. M. Winter, M. J. Scott, P. J. Gaffney, S. A. Wickline, G. M. Lanza 2006. In vitro demonstration using 19f magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 tesla. Invest. Radiol. 41:305–312. doi:10.1097/01.rli.0000199281.60135.6a

    Article  PubMed  Google Scholar 

  6. Clark L. C. Jr., E. W. Clark, R. E. Moore, D. G. Kinnett, E. I. Inscho Jr. 1983. Room temperature-stable biocompatible fluorocarbon emulsions. Prog. Clin. Biol. Res. 122:169–180

    CAS  PubMed  Google Scholar 

  7. Cowley M. J., F. R. Snow, G. DiSciascio, K. Kelly, C. Guard, J. V. Nixon 1990. Perfluorochemical perfusion during coronary angioplasty in unstable and high-risk patients. Circulation 81, IV27–34

    CAS  PubMed  Google Scholar 

  8. Croce M. A., T. C. Fabian, J. H. Patton Jr., S. M. Melton, M. Moore, L. L. Trenthem 1998. Partial liquid ventilation decreases the inflammatory response in the alveolar environment of trauma patients. J. Trauma 45:273–280; discussion 280–272

    Article  CAS  PubMed  Google Scholar 

  9. Crowder K. C., M. S. Hughes, J. N. Marsh, A. M. Barbieri, R. W. Fuhrhop, G. M. Lanza, S. A. Wickline 2005. Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. Ultrasound Med. Biol. 31:1693–1700. doi:10.1016/j.ultrasmedbio.2005.07.022

    Article  PubMed  Google Scholar 

  10. Dayton P., A. Klibanov, G. Brandenburger, K. Ferrara 1999. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med. Biol. 25:1195–1201. doi:10.1016/S0301-5629(99)00062-9

    Article  CAS  PubMed  Google Scholar 

  11. Deng C. X., F. Sieling, H. Pan, J. Cui 2004. Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 30:519–526. doi:10.1016/j.ultrasmedbio.2004.01.005

    Article  PubMed  Google Scholar 

  12. Ferrara N., K. J. Hillan, H. P. Gerber, W. Novotny 2004. Discovery and development of bevacizumab, an anti-vegf antibody for treating cancer. Nat. Rev. Drug Discov. 3:391–400. doi:10.1038/nrd1381

    Article  CAS  PubMed  Google Scholar 

  13. Flacke S., S. Fischer, M. J. Scott, R. J. Fuhrhop, J. S. Allen, M. McLean, P. Winter, G. A. Sicard, P. J. Gaffney, S. A. Wickline, G. M. Lanza 2001. Novel mri contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285. doi:10.1161/hc3601.094303

    Article  CAS  PubMed  Google Scholar 

  14. Flaim S. F. 1994. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif. Cells Blood Substit. Immobil. Biotechnol. 22:1043–1054. doi:10.3109/10731199409138801

    Article  CAS  PubMed  Google Scholar 

  15. Folkman J. 2003. Angiogenesis and apoptosis. Semin. Cancer Biol. 13:159–167. doi:10.1016/S1044-579X(02)00133-5

    Article  CAS  PubMed  Google Scholar 

  16. Guzman H. R., D. X. Nguyen, S. Khan, M. R. Prausnitz 2001. Ultrasound-mediated disruption of cell membranes. I. Quantification of molecular uptake and cell viability. J. Acoust. Soc. Am. 110:588–596. doi:10.1121/1.1376131

    Article  CAS  PubMed  Google Scholar 

  17. Hirschl R. B., M. Croce, D. Gore, H. Wiedemann, K. Davis, J. Zwischenberger, R. H. Bartlett 2002. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 165:781–787

    PubMed  Google Scholar 

  18. Hu G., M. Lijowski, H. Zhang, K. C. Partlow, S. D. Caruthers, G. Kiefer, G. Gulyas, P. Athey, M. J. Scott, S. A. Wickline, G. M. Lanza 2007. Imaging of vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111in nanoparticles. Int. J. Cancer 120:1951–1957. doi:10.1002/ijc.22581

    Article  CAS  PubMed  Google Scholar 

  19. Jacobs R. E., S. E. Fraser 1994. Magnetic resonance microscopy of embryonic cell lineages and movements. Science 263:681–684. doi:10.1126/science.7508143

    Article  CAS  PubMed  Google Scholar 

  20. Jaffe C. C., D. Wohlgelernter, H. Cabin, L. Bowman, L. Deckelbaum, M. Remetz, M. Cleman 1988. Preservation of left ventricular ejection fraction during percutaneous transluminal coronary angioplasty by distal transcatheter coronary perfusion of oxygenated fluosol da 20%. Am. Heart J. 115:1156–1164. doi:10.1016/0002-8703(88)90002-6

    Article  CAS  PubMed  Google Scholar 

  21. Jain R. K., A. V. Finn, F. D. Kolodgie, H. K. Gold, R. Virmani 2007. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat. Clin. Pract. Cardiovasc. Med. 4:491–502. doi:10.1038/ncpcardio0979

    Article  CAS  PubMed  Google Scholar 

  22. Keipert P. E., S. Otto, S. F. Flaim, J. G. Weers, E. A. Schutt, T. J. Pelura, D. H. Klein, T. L. Yaksh. 1994. Influence of perflubron emulsion particle size on blood half-life and febrile response in rats. Artif. Cells Blood Substit. Immobil. Biotechnol. 22:1169–1174. doi:10.3109/10731199409138812

    Article  CAS  PubMed  Google Scholar 

  23. Kircher M. F., J. R. Allport, E. E. Graves, V. Love, L. Josephson, A. H. Lichtman, R. Weissleder. 2003. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic t-lymphocyte trafficking to tumors. Cancer Res. 63:6838–6846

    CAS  PubMed  Google Scholar 

  24. Lane T. A. 1995. Perfluorochemical-based artificial oxygen carrying red cell substitutes. Transfus. Sci. 16:19–31. doi:10.1016/0955-3886(94)00067-T

    Article  CAS  PubMed  Google Scholar 

  25. Lanza G. M., C. H. Lorenz, S. E. Fischer, M. J. Scott, W. P. Cacheris, R. J. Kaufmann, P. J. Gaffney, S. A. Wickline. 1998. Enhanced detection of thrombi with a novel fibrin-targeted magnetic resonance imaging agent. Acad. Radiol. 5(Suppl 1):S173–176; discussion S183–174

    Article  PubMed  Google Scholar 

  26. Lanza G. M., S. A. Wickline 2001. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog. Cardiovasc. Dis. 44:13–31. doi:10.1053/pcad.2001.26440

    Article  CAS  PubMed  Google Scholar 

  27. Lanza G. M., X. Yu, P. M. Winter, D. R. Abendschein, K. K. Karukstis, M. J. Scott, L. K. Chinen, R. W. Fuhrhop, D. E. Scherrer, S. A. Wickline 2002. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106:2842–2847. doi:10.1161/01.CIR.0000044020.27990.32

    Article  CAS  PubMed  Google Scholar 

  28. Lanza G. M., S. A. Wickline 2003. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr. Probl. Cardiol. 28:625–653. doi:10.1016/j.cpcardiol.2003.11.001

    Article  PubMed  Google Scholar 

  29. Marsh J. N., A. Senpan, G. Hu, M. J. Scott, P. J. Gaffney, S. A. Wickline, G. M. Lanza 2007. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 2:533–543. doi:10.2217/17435889.2.4.533

    Article  CAS  PubMed  Google Scholar 

  30. McCarthy M. J., I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle 1999. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J. Vasc. Surg. 30:261–268. doi:10.1016/S0741-5214(99)70136-9

    Article  CAS  PubMed  Google Scholar 

  31. McGoron A. J., R. Pratt, J. Zhang, Y. Shiferaw, S. Thomas, R. Millard 1994. Perfluorocarbon distribution to liver, lung and spleen of emulsions of perfluorotributylamine (ftba) in pigs and rats and perfluorooctyl bromide (pfob) in rats and dogs by 19f nmr spectroscopy. Artif. Cells Blood Substit. Immobil. Biotechnol. 22:1243–1250. doi:10.3109/10731199409138822

    Article  CAS  PubMed  Google Scholar 

  32. Modo M., K. Mellodew, D. Cash, S. E. Fraser, T. J. Meade, J. Price, S. C. Williams 2004. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317. doi:10.1016/j.neuroimage.2003.08.030

    Article  PubMed  Google Scholar 

  33. Morawski A. M., P. M. Winter, K. C. Crowder, S. D. Caruthers, R. W. Fuhrhop, M. J. Scott, J. D. Robertson, D. R. Abendschein, G. M. Lanza, S. A. Wickline 2004. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with mri. Magn. Reson. Med. 51:480–486. doi:10.1002/mrm.20010

    Article  CAS  PubMed  Google Scholar 

  34. Morawski A. M., P. M. Winter, X. Yu, R. W. Fuhrhop, M. J. Scott, F. Hockett, J. D. Robertson, P. J. Gaffney, G. M. Lanza, S. A. Wickline 2004. Quantitative “Magnetic resonance immunohistochemistry” With ligand-targeted (19)f nanoparticles. Magn. Reson. Med. 52:1255–1262. doi:10.1002/mrm.20287

    Article  CAS  PubMed  Google Scholar 

  35. Moreno P. R., K. R. Purushothaman, M. Sirol, A. P. Levy, V. Fuster 2006. Neovascularization in human atherosclerosis. Circulation 113:2245–2252. doi:10.1161/CIRCULATIONAHA.105.578955

    Article  PubMed  Google Scholar 

  36. Moulton K. S., E. Heller, M. A. Konerding, E. Flynn, W. Palinski, J. Folkman 1999. Angiogenesis inhibitors endostatin or tnp-470 reduce intimal neovascularization and plaque growth in apolipoprotein e-deficient mice. Circulation 99:1726–1732

    CAS  PubMed  Google Scholar 

  37. Naito R., K. Yokoyama 1978. An improved perfluorodecalin emulsion. Prog. Clin. Biol. Res. 19:81–89

    CAS  PubMed  Google Scholar 

  38. Neubauer A. M., S. D. Caruthers, F. D. Hockett, T. Cyrus, J. D. Robertson, J. S. Allen, T. D. Williams, R. W. Fuhrhop, G. M. Lanza, S. A. Wickline 2007. Fluorine cardiovascular magnetic resonance angiography in vivo at 1.5 t with perfluorocarbon nanoparticle contrast agents. J. Cardiovasc. Magn. Reson. 9:565–573. doi:10.1080/10976640600945481

    Article  PubMed  Google Scholar 

  39. O’Brien E. R., M. R. Garvin, R. Dev, D. K. Stewart, T. Hinohara, J. B. Simpson, S. M. Schwartz 1994. Angiogenesis in human coronary atherosclerotic plaques. Am. J. Pathol. 145:883–894

    PubMed  Google Scholar 

  40. Partlow K. C., J. Chen, J. A. Brant, A. M. Neubauer, T. E. Meyerrose, M. H. Creer, J. A. Nolta, S. D. Caruthers, G. M. Lanza, S. A. Wickline 2007. 19f magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. Faseb J. 21:1647–1654. doi:10.1096/fj.06-6505com

    Article  CAS  PubMed  Google Scholar 

  41. Partlow, K. C., G. M. Lanza, and S. A. Wickline. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials 29:3367–3375, 2008

    Google Scholar 

  42. Police A. M., K. Waxman, G. Tominaga 1985. Pulmonary complications after fluosol administration to patients with life-threatening blood loss. Crit. Care Med. 13:96–98. doi:10.1097/00003246-198502000-00008

    Article  CAS  PubMed  Google Scholar 

  43. Riess J. G. 1994. The design and development of improved fluorocarbon-based products for use in medicine and biology. Artif. Cells Blood Substit. Immobil. Biotechnol. 22:215–234. doi:10.3109/10731199409117416

    Article  CAS  PubMed  Google Scholar 

  44. Soman N. R., J. N. Marsh, M. S. Hughes, G. M. Lanza, S. A. Wickline 2006. Acoustic activation of targeted liquid perfluorocarbon nanoparticles does not compromise endothelial integrity. IEEE Trans. Nanobiosci. 5:69–75. doi:10.1109/TNB.2006.875052

    Article  Google Scholar 

  45. Soman N. R., G. M. Lanza, J. M. Heuser, P. H. Schlesinger, S. A. Wickline 2008. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett. 8:1131–1136. doi:10.1021/nl073290r

    Article  CAS  PubMed  Google Scholar 

  46. Soman, N. R., J. N. Marsh, G. M. Lanza, and S. A. Wickline. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles. Nanotechnology 19:185102–185109, 2008. doi:10.1088/0957-4484/19/18/185102

    Google Scholar 

  47. Taniyama Y., K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, R. Morishita 2002. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 105:1233–1239. doi:10.1161/hc1002.105228

    Article  CAS  PubMed  Google Scholar 

  48. ter Haar G., S. J. Wyard 1978. Blood cell banding in ultrasonic standing wave fields: a physical analysis. Ultrasound Med. Biol. 4:111–123. doi:10.1016/0301-5629(78)90036-4

    Article  CAS  PubMed  Google Scholar 

  49. Unger E. C., T. P. McCreery, R. H. Sweitzer, V. E. Caldwell, Y. Wu 1998. Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest. Radiol. 33:886–892. doi:10.1097/00004424-199812000-00007

    Article  CAS  PubMed  Google Scholar 

  50. Wickline S. A., G. M. Lanza 2002. Molecular imaging, targeted therapeutics, and nanoscience. J. Cell. Biochem. Suppl. 39:90–97. doi:10.1002/jcb.10422

    Article  PubMed  Google Scholar 

  51. Wickline S. A., G. M. Lanza 2003. Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095. doi:10.1161/01.CIR.0000059651.17045.77

    Article  PubMed  Google Scholar 

  52. Winter P. M., A. M. Neubauer, S. D. Caruthers, T. D. Harris, J. D. Robertson, T. A. Williams, A. H. Schmieder, G. Hu, J. S. Allen, E. K. Lacy, H. Zhang, S. A. Wickline, G. M. Lanza 2006. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26:2103–2109. doi:10.1161/01.ATV.0000235724.11299.76

    Article  CAS  PubMed  Google Scholar 

  53. Winter, P. M., A. H. Schmieder, S. D. Caruthers, J. L. Keene, H. Zhang, S. A. Wickline, and G. M. Lanza. Minute dosages of {alpha}{nu}{beta}3-targeted fumagillin nanoparticles impair vx-2 tumor angiogenesis and development in rabbits. Faseb J. 22:2758–2767, 2008

    Google Scholar 

  54. Wootton S. L., B. D. Coley, S. V. Hilton, D. K. Edwards 3rd, J. R. Amberg, R. F. Mattrey 1993. Value of brominated fluorocarbons for the radiographic diagnosis of small-bowel obstruction: comparison with other contrast agents in rats. AJR Am. J. Roentgenol. 161:409–416

    CAS  PubMed  Google Scholar 

  55. Yeh T. C., W. Zhang, S. T. Ildstad, C. Ho 1993. Intracellular labeling of t-cells with superparamagnetic contrast agents. Magn. Reson. Med. 30:617–625. doi:10.1002/mrm.1910300513

    Article  CAS  PubMed  Google Scholar 

  56. Yokoyama K., K. Yamanouchi, M. Watanabe, T. Matsumoto, R. Murashima, T. Daimoto, T. Hamano, H. Okamoto, T. Suyama, R. Watanabe, R. Naito 1975. Preparation of perfluorodecalin emulsion, an approach to the red cells substitute. Fed. Proc. 34:1478–1483

    CAS  PubMed  Google Scholar 

  57. Yu X., S. K. Song, J. Chen, M. J. Scott, R. J. Fuhrhop, C. S. Hall, P. J. Gaffney, S. A. Wickline, G. M. Lanza 2000. High-resolution mri characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn. Reson. Med. 44:867–872. doi:10.1002/1522-2594(200012)44:6<867::AID-MRM7>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association (0810144Z to MMK), the National Institutes of Health (HL073646 and CA119342 to SAW) and Philips Healthcare. SAW and GML are cofounders, equity holders and board members of Kereos, Inc. SDC is employed by Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Wickline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneda, M.M., Caruthers, S., Lanza, G.M. et al. Perfluorocarbon Nanoemulsions for Quantitative Molecular Imaging and Targeted Therapeutics. Ann Biomed Eng 37, 1922–1933 (2009). https://doi.org/10.1007/s10439-009-9643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9643-z

Keywords

Navigation