Skip to main content

Advertisement

Log in

Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to achieve both manageable simulation and local accuracy of airflow and nanoparticle deposition in a representative human tracheobronchial (TB) region, the complex airway network was decomposed into adjustable triple-bifurcation units, spreading axially and laterally. Given Q in = 15 and 30 L/min and a realistic inlet velocity profile, the experimentally validated computer simulation model provided some interesting 3-D airflow patterns, i.e., for each TB-unit they depend on the upstream condition, local geometry and local Reynolds number. Directly coupled to the local airflow fields are the convective-diffusive transport and deposition of nanoparticles, i.e., 1 nm ≤ d p ≤ 100 nm. The CFD modeling predictions were compared to experimental observations as well as analytical modeling results. The CFD-simulated TB deposition values agree astonishingly well with analytical modeling results. However, measurable differences can be observed for bifurcation-by-bifurcation deposition fractions obtained with these two different approaches due to the effects of more realistic inlet conditions and geometric features incorporated in the CFD model. Specifically, while the difference between the total TB deposition fraction (DF) is less than 16%, it may be up to 70% for bifurcation-by-bifurcation DFs. In addition, it was found that fully developed flow and uniform nanoparticle concentrations can be assumed beyond generation G12. For nanoparticles with d p > 10 nm, the geometric effects, including daughter-branch rotation, are minor. Furthermore, the deposition efficiencies at each individual bifurcation in the TB region can be well correlated as a function of an effective diffusion parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Asgharian B., and S. Anjilvel. A Monte-Carlo calculation of the deposition efficiency of inhaled particles in lower airways. J. Aerosol Sci. 25: 711–721, 1994. doi:10.1016/0021-8502(94)90012-4.

    Article  Google Scholar 

  2. Asgharian B., W. Hofman, and R. Bergmann. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34: 332–39, 2001.

    Article  CAS  Google Scholar 

  3. Asgharian B., M. G. Menache, and F. J. Miller. Modeling age-related particle deposition in humans. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung 17: 213–24, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Balashazy I., and W. Hofmann. Particle deposition in airway bifurcations.1. Inspiratory flow. J. Aerosol Sci. 24: 745–772, 1993. doi:10.1016/0021-8502(93)90044-A.

    Article  CAS  Google Scholar 

  5. Balashazy I., and W. Hofmann. Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol Sci. 26: 273–292, 1995. doi:10.1016/0021-8502(94)00106-9.

    Article  CAS  Google Scholar 

  6. Cheng K. H., Y. S. Cheng, H. C. Yeh, R. A. Guilmette, S. Q. Simpson, Y. H. Yang, and D. L. Swift. In vivo measurements of nasal airway dimensions and ultrafine aerosol deposition in the human nasal and oral airways. J. Aerosol Sci. 27: 785–801, 1996. doi:10.1016/0021-8502(96)00029-8.

    Article  CAS  Google Scholar 

  7. Cheng K. H., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Deposition of ultrafine aerosols in the head airways during natural breathing and during simulated breath-holding using replicate human upper airway casts. Aerosol Sci. Technol. 23: 465–474, 1995. doi:10.1080/02786829508965329.

    Article  CAS  Google Scholar 

  8. Cheng K. H., Y. S. Cheng, H. C. Yeh, and D. L. Swift. An experimental method for measuring aerosol deposition efficiency in the human oral airway. American Industrial Hygiene Association Journal 58: 207–213, 1997. doi:10.1080/15428119791012856.

    PubMed  CAS  Google Scholar 

  9. Cheng K. H., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. Journal of Biomechanical Engineering-Transactions of the Asme 119: 476–482, 1997. doi:10.1115/1.2798296.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng Y. S., Y. Yamada, H. C. Yeh, and D. L. Swift. Diffusional deposition of ultrafine aerosols in a human nasal cast. J. Aerosol Sci. 19: 741–751, 1988. doi:10.1016/0021-8502(88)90009-2.

    Article  Google Scholar 

  11. Choi J. I., and C. S. Kim. Mathematical analysis of particle deposition in human lungs: an improved single path transport model. Inhal. Toxicol. 19: 925–39, 2007. doi:10.1080/08958370701513014.

    Article  PubMed  CAS  Google Scholar 

  12. Clift, R., J. R. Grace, and M. E. Weber. Bubbles, Drops, and Particles, NY: Academic Press, 1978.

  13. Cohen B. S., R. G. Sussman, and M. Lippmann. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 12: 1082–1091, 1990. doi:10.1080/02786829008959418.

    Article  Google Scholar 

  14. Comer J. K., C. Kleinstreuer, and Z. Zhang. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. Journal of Fluid Mechanics 435: 25–54, 2001.

    Google Scholar 

  15. Daigle C. C., D. C. Chalupa, F. R. Gibb, P. E. Morrow, G. Oberdorster, M. J. Utell, M. W. Frampton. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 15: 539–552, 2003. doi:10.1080/08958370304468.

    Article  PubMed  CAS  Google Scholar 

  16. Finlay, W. H. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. London, UK: Academic Press, 2001.

  17. Gemci T., V. Ponyavin, Y. Chen, H. Chen, and R. Collins. Computational model of airflow in upper 17 generations of human respiratory tract. Journal of Biomechanics 41: 2047–2054, 2008. doi:10.1016/j.jbiomech.2007.12.019.

    Article  PubMed  CAS  Google Scholar 

  18. Goo J., and C. S. Kim. Theoretical analysis of particle deposition in human lungs considering stochastic variations of airway morphology. J. Aerosol Sci. 34: 585–602, 2003. doi:10.1016/S0021-8502(03)00024-7.

    Article  CAS  Google Scholar 

  19. Hoet P., I. Brueske-Hohlfeld, O. Salata. Nanoparticles—known and unknown health risks. Journal of Nanobiotechnology 2: 12, 2004. doi:10.1186/1477-3155-2-12.

    Article  CAS  Google Scholar 

  20. Hofmann W. Stochastic dose estimation for inhaled particulates. Stochastic Environmental Research and Risk Assessment 14: 181–93, 2000. doi:10.1007/s004770000037.

    Article  Google Scholar 

  21. Hofmann W., B. Asgharian, and R. Winkler-Heil. Modeling intersubject variability of particle deposition in human lungs. J. Aerosol Sci. 33: 219–35, 2002. doi:10.1016/S0021-8502(01)00167-7.

    Article  CAS  Google Scholar 

  22. Hofmann W., R. Golser, and I. Balashazy. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. Aerosol Sci. Technol. 37: 988–994, 2003. doi:10.1080/02786820300898.

    Article  CAS  Google Scholar 

  23. Ingham D. B. Diffusion of aerosols from a stream flowing through a cylindrical tube. J. Aerosol Sci. 6: 125–32, 1975. doi:10.1016/0021-8502(75)90005-1.

    Article  Google Scholar 

  24. Kelly J. T., B. Asgharian, J. S. Kimbell, B. A. Wong. Particle deposition in human nasal airway replicas manufactured by different methods. Part II. Ultrafine particles. Aerosol Sci. Technol. 38: 1072–1079, 2004.

    CAS  Google Scholar 

  25. Kim C. S., and P. A. Jaques. Respiratory dose of inhaled ultrafine particles in healthy adults. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 358: 2693–2705, 2000.

    Article  CAS  Google Scholar 

  26. Kim C. S., and P. A. Jaques. Analysis of total respiratory deposition of inhaled ultrafine particles in adult subjects at various breathing patterns. Aerosol Sci. Technol. 38: 525–540, 2004. doi:10.1080/02786820490465513.

    Article  CAS  Google Scholar 

  27. Kleinstreuer C., and Z. Zhang. Laminar-to-turbulent fluid-particle flows in a human airway model. International Journal of Multiphase Flow 29: 271–289, 2003. doi:10.1016/S0301-9322(02)00131-3.

    Article  CAS  Google Scholar 

  28. Kleinstreuer, C., and Z. Zhang. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. J. Biomech. Eng., 2008 (in press).

  29. Kleinstreuer C., Z. Zhang, and J. F. Donohue. Targeted drug-aerosol delivery in the human respiratory system. Annual Review of Biomedical Engineering 10: 195–220, 2008. doi:10.1146/annurev.bioeng.10.061807.160544.

    Article  PubMed  CAS  Google Scholar 

  30. Kleinstreuer, C., Z. Zhang, and Z. Li. Modeling airflow and particle transport/deposition in pulmonary airways. Respir. Physiol. Neurobiol., 2008. doi:10.1016/j.resp.2008.07.002.

  31. Koblinger L., and W. Hofmann. Monte-Carlo modeling of aerosol deposition in human lungs.1. Simulation of particle-transport in a stochastic lung structure. J. Aerosol Sci. 21: 661–74, 1990. doi:10.1016/0021-8502(90)90121-D.

    Article  Google Scholar 

  32. Longest P. W., and M. J. Oldham. Numerical and experimental deposition of fine respiratory aerosols: development of a two-phase drift flux model with near-wall velocity corrections. J. Aerosol Sci. 39: 48–70, 2008. doi:10.1016/j.jaerosci.2007.10.001.

    Article  CAS  Google Scholar 

  33. Longest P. W., and S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Medical Engineering & Physics 29: 350–366, 2007. doi:10.1016/j.medengphy.2006.05.012.

    Article  PubMed  Google Scholar 

  34. Longest P. W., and J. X. Xi. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38: 111–130, 2007. doi:10.1016/j.jaerosci.2006.09.007.

    Article  CAS  Google Scholar 

  35. Longest P. W., and J. X. Xi. Effectiveness of direct lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Technol. 41: 380–397, 2007. doi:10.1080/02786820701203223.

    Article  CAS  Google Scholar 

  36. Moskal A., and L. Gradon. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. J. Aerosol Sci. 33: 1525–1539, 2002. doi:10.1016/S0021-8502(02)00108-8.

    Article  CAS  Google Scholar 

  37. National Council on Radiation Protection and Measurements (NCRP) (1997). Deposition, Retention, and Dosimetry of Inhaled Radioactive Substances, Report No. 125, National Council on Radiation Protection and Measurements, Bethesda, MD.

    Google Scholar 

  38. National Institute for Public Health and the Environment (RIVM). Multiple Path Particle Dosimetry Model (MPPD v 1.0): A Model for Human and Rat Airway Particle Dosimetry, RIVA Report 650010030. The Netherlands: Bilthoven, 2002.

  39. Oberdörster G., E. Oberdörster, and J. Oberdörster. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113: 823–839, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Roco, M. Nanotechnology’s future. Sci. Am., 2006.

  41. Service R. F. Nanomaterials show signs of toxicity. Science 300: 243, 2003. doi:10.1126/science.300.5617.243a.

    Article  PubMed  Google Scholar 

  42. Shi H., C. Kleinstreuer, and Z. Zhang. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. Journal of Biomechanical Engineering-Transactions of the ASME 128: 697–706, 2006. doi:10.1115/1.2244574.

    Article  PubMed  CAS  Google Scholar 

  43. Shi H., C. Kleinstreuer, Z. Zhang, and C. S. Kim. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Physics of Fluids 16: 2199–2213, 2004. doi:10.1063/1.1724830.

    Article  CAS  Google Scholar 

  44. Smith S., Y. S. Cheng, and H. C. Yeh. Deposition of ultrafine particles in human tracheobronchial airways of adults and children. Aerosol Sci. Technol. 35: 697–709, 2001. doi:10.1080/02786820152546743.

    Article  CAS  Google Scholar 

  45. Theodore, L., and R. G. Kunz. Nanotechnology: Environmental Implications and Solutions. New York, NY: Wiley-Interscience, 2005.

  46. Tian L., and G. Ahmadi. Particle deposition in turbulent duct flows—comparisons of different model predictions. J. Aerosol Sci. 38: 377–397, 2007. doi:10.1016/j.jaerosci.2006.12.003.

    Article  CAS  Google Scholar 

  47. Varghese S. S., and S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. Journal of Biomechanical Engineering-Transactions of the Asme 125: 445–460, 2003. doi:10.1115/1.1589774.

    Article  PubMed  Google Scholar 

  48. Weibel E. R. Morphometry of the Human Lung. New York: Academic Press, 1963.

    Google Scholar 

  49. Wilcox D. C. Turbulence Modeling for CFD. LA Canada, CA: DCW Industries, Inc., 1998.

    Google Scholar 

  50. Xi J. X., and P. W. Longest. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. Journal of Biomechanical Engineering—Trans of the ASME 130: 011008, 2008.

    Article  PubMed  Google Scholar 

  51. Yu G., Z. Zhang, and R. Lessmann. Computer simulation of the flow field and particle deposition by diffusion in a 3-D human airway bifurcation. Aerosol Sci. Technol. 25: 338–352, 1996. doi:10.1080/02786829608965400.

    Article  CAS  Google Scholar 

  52. Yu G., Z. Zhang, and R. Lessmann. Fluid flow and particle diffusion in the human upper respiratory system. Aerosol Sci. Technol. 28: 146–158, 1998. doi:10.1080/02786829808965517.

    Article  CAS  Google Scholar 

  53. Zamankhan P., G. Ahmadi, Z. C. Wang, P. K. Hopke, Y. S. Cheng, W. C. Su, and D. Leonard. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Sci. Technol. 40: 463–476, 2006. doi:10.1080/02786820600660903.

    Article  CAS  Google Scholar 

  54. Zhang Z., and C. Kleinstreuer. Transient airflow structures and particle transport in a sequentially branching lung airway model. Physics of Fluids 14: 862–880, 2002. doi:10.1063/1.1433495.

    Article  CAS  Google Scholar 

  55. Zhang Z., and C. Kleinstreuer. Low-Reynolds-number turbulent flows in locally constricted conduits: a comparison study. AIAA Journal 41: 831–840, 2003. doi:10.2514/2.2044.

    Article  Google Scholar 

  56. Zhang Z., and C. Kleinstreuer. Species heat and mass transfer in a human upper airway model. International Journal of Heat and Mass Transfer 46: 4755–4768, 2003. doi:10.1016/S0017-9310(03)00358-2.

    Article  Google Scholar 

  57. Zhang Z., and C. Kleinstreuer. Airflow structures and nano-particle deposition in a human upper airway model. Journal of Computational Physics 198: 178–210, 2004. doi:10.1016/j.jcp.2003.11.034.

    Article  Google Scholar 

  58. Zhang Z., C. Kleinstreuer, J. F. Donohue, and C. S. Kim. Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 36: 211–233, 2005. doi:10.1016/j.jaerosci.2004.08.006.

    Article  CAS  Google Scholar 

  59. Zhang Z., C. Kleinstreuer, and C. S. Kim. Micro-particle transport and deposition in a human oral airway model. J. Aerosol Sci. 33: 1635–1652, 2002. doi:10.1016/S0021-8502(02)00122-2.

    Article  CAS  Google Scholar 

  60. Zhang Z., C. Kleinstreuer, and C. S. Kim. Transport and uptake of MTBE and ethanol vapors in a human upper airway model. Inhal. Toxicol. 18: 169–184, 2006. doi:10.1080/08958370500434172.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, Z., C. Kleinstreuer, and C. S. Kim. Micron particle deposition in a human 16-generation tracheobronchial airway model. J. Aerosol Sci., 2008. doi:10.1016/j.jaerosci.2008.08.003.

Download references

Acknowledgments

This effort was sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-07-1-0461 (Dr. Walt Kozumbo, Program Manager), NSF Grant CBET-0834054 (Dr Marc S. Ingber, Program Director), and the US Environmental Protection Agency (Dr. C.S. Kim, Program Monitor). The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The use of both CFX software from ANSYS Inc. (Canonsburg, PA) and the IBM Linux Cluster at the High Performance Computing Center at North Carolina State University (Raleigh, NC) are gratefully acknowledged as well.

Disclaimer

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research, the National Science Foundation, or the U.S. Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Kleinstreuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Kleinstreuer, C. & Kim, C.S. Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model. Ann Biomed Eng 36, 2095–2110 (2008). https://doi.org/10.1007/s10439-008-9583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9583-z

Keywords

Navigation