Skip to main content
Log in

Effects of Differences in Nasal Anatomy on Airflow Distribution: A Comparison of Four Individuals at Rest

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Differences in nasal anatomy among human subjects may cause significant differences in respiratory airflow patterns and subsequent dosimetry of inhaled gases and particles in the respiratory tract. This study used computational fluid dynamics (CFD) to study inter-individual differences in nasal airflow among four healthy individuals. Magnetic resonance imaging (MRI) scans were digitized and nasal-surface-area-to-volume ratios (SAVR) were calculated for 15 adults. Two males and two females, representative of the range of SAVR values, were selected for flow analysis. Nasal CFD models were constructed for each subject by a semi-automated process that provided input to a commercial mesh generator to generate structured hexahedral meshes (Gambit, Fluent, Inc., Lebanon, NH, USA). Steady-state inspiratory laminar airflow at 15 L/min was calculated using commercial CFD software (FIDAP, Fluent, Inc., Lebanon, NH, USA). Streamline patterns, velocities, and helicity values were compared. In all subjects, the majority of flow passed through the middle and ventral regions of the nasal passages; however, the amount and location of swirling flow differed among individuals. Cross-sectional flow allocation analysis also indicated inter-individual differences. Laboratory water–dye experiments confirmed streamlines and velocity magnitudes predicted by the computational model. These results suggest that significant inter-individual differences exist in bulk airflow patterns in the nose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8

Similar content being viewed by others

References

  1. Annals of the ICRP 24; ICRP (International Commission on Radiological Protection) Publication 66. Human Respiratory Tract Model for Radiological Protection. Oxford: Pergamon Press, 1994

  2. Batchelor G. K. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 1967

    Google Scholar 

  3. Cheng Y.-S., Y. Yamada, H.-C. Yeh, D. L. Swift. Diffusional deposition of ultrafine aerosols in a human nasal cast. J. Aerosol. Sci. 19: 741–751, 1988. doi:10.1016/0021−8502(88)90009-2

    Article  Google Scholar 

  4. Chung S. K., Y. R. Son, S. J. Shin, S. K. Kim. Nasal airflow during respiratory cycle. Am. J. Rhinol. 20: 379–384, 2006. doi:10.2500/ajr.2006.20.2890

    Article  PubMed  Google Scholar 

  5. Croce C., R. Fodil, M. Durand, G. Sbirlea-Apiou, G. Caillibotte, J. F. Papon, J. R. Blondeau, A. Coste, D. Isabey, B. Louis. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry. Ann. Biomed. Eng. 34: 997–1007, 2006. doi:10.1007/s10439-006-9094-8

    Article  PubMed  Google Scholar 

  6. Elad D., S. Naftali, M. Rosenfeld, M. Wolf. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J. Appl. Physiol. 100: 1003–1010, 2006. doi:10.1152/japplphysiol.01049.2005

    Article  PubMed  Google Scholar 

  7. Erikson K. M., D. C. Dorman, L. H. Lash, M. Aschner. Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol. Sci. 97: 459–466, 2007. doi:10.1093/toxsci/kfm044

    Article  PubMed  CAS  Google Scholar 

  8. FIDAP 1991. FIDAP Theoretical Manual. Fluent, Inc., Lebanon, NH

    Google Scholar 

  9. Grigioni M., C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, V. Barbaro. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38: 1275–1386, 2005

    Google Scholar 

  10. Guilmette R. A., Y. S. Cheng, W. C. Griffith. Characterizing the variability in adult human nasal airway dimensions. Ann. Occup. Hyg. 41(Suppl. 1): 491–496, 1997

    Google Scholar 

  11. Horschler I., M. Meinke, W. Schroder. Numerical simulation of the flow field in a model of the nasal cavity. Comput Fluid 32: 39–45, 2003. doi:10.1016/S0045-7930(01)00097-4

    Article  Google Scholar 

  12. Kelly J. T., B. Asgharian, J. S. Kimbell, B. A. Wong. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol. Sci. Technol. 38: 1063–1071, 2004

    CAS  Google Scholar 

  13. Kelly J. T., A. K. Prasad, A. S. Wexler. Detailed flow patterns in the nasal cavity. J. Appl. Physiol. 89: 323–337, 2000

    PubMed  CAS  Google Scholar 

  14. Keyhani K., P. W. Scherer, M. M. Mozell. Numerical simulation of airflow in the human nasal cavity. J. Biomech. Eng. 117: 429–441, 1995

    Article  PubMed  CAS  Google Scholar 

  15. Kim J. K., J-H. Yoon, C. H. Kim, T. W. Nam, D. B. Shim, H. A. Shin. Particle image velocimetry measurements for the study of nasal airflow. Acta Oto-Laryngol. 126: 282–287, 2006

    Google Scholar 

  16. Kimbell J. S., R. P. Subramaniam. Use of computational fluid dynamics models for dosimetry of inhaled gases in the nasal passages. Inhalat. Toxicol. 13: 325–334, 2001. doi:10.1080/08958370151126185

    Article  CAS  Google Scholar 

  17. Lang J. Clinical Anatomy of the Nose, Nasal Cavity and Paranasal Sinuses. New York: Thieme Medical, 1989

    Google Scholar 

  18. Lindemann J., T. Keck, K. Wiesmiller, B. Sander, H.-J. Brambs, G. Rettinger, D. Pless. A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 114: 1037–1041, 2004. doi:10.1097/00005537-200406000-00015

    Article  PubMed  Google Scholar 

  19. Liu Y., E. A. Matida, J. Gu, M. R. Johnson. Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES. J. Aerosol. Sci. 28: 683–700, 2007. doi:10.1016/j.jaerosci.2007.05.003

    Article  CAS  Google Scholar 

  20. Longest P. W., S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29: 350–366, 2006. doi:10.1016/j.medengphy.2006.05.012

    Article  PubMed  Google Scholar 

  21. Martonen T. B., Z. Zhang, G. Yue, C. J. Musante. 3-D Particle transport within the human upper respiratory tract. J. Aerosol. Sci. 33: 1095–1110, 2002. doi:10.1016/S0021-8502(02)00060-5

    Article  CAS  Google Scholar 

  22. Menache M. G., L. M. Hanna, E. A. Gross, S. R. Lou, S. J. Zinreich, D. A. Leopold, A. M. Jarabek, F. J. Miller. Upper respiratory tract surface areas and volumes of laboratory animals and humans: considerations for dosimetry models. J. Toxicol. Environ. Health. 50: 475–506, 1997. doi:10.1080/00984109708984003

    Article  PubMed  CAS  Google Scholar 

  23. Mlynski G., S. Grutzenmacher, S. Plontke, B. Mlynski, C. Lang. Correlation of nasal morphology and respiratory function. Rhinology 39: 197–201, 2001

    PubMed  CAS  Google Scholar 

  24. Park, K. I., C. Burcker, and W. Limberg. Experimental study of velocity fields in a model of human nasal cavity by DPIV. In: Laser Anemometry Advances and Applications: Proceedings of the 7th International Conference. Karlsruhe, Germany: German Association for Laser Anemometry GALA e.V., 1997, pp. 617–626

  25. Shi H., C. Kleinstreuer, Z. Zhang. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. Trans. ASME. 128: 697–706, 2006. doi:10.1115/1.2244574

    Article  CAS  Google Scholar 

  26. Subramaniam R. P., R. B. Richardson, K. T. Morgan, J. S. Kimbell, R. A. Guilmette. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhalat. Toxicol. 10: 91–120, 1998. doi:10.1080/089583798197772

    Article  CAS  Google Scholar 

  27. Weinhold N., G. Mlynski. Numerical simulation of airflow in the human nose. Eur. Arch. Oto-rhino-laryngol. 261: 452–455, 2004. doi:10.1007/s00405-003-0675-y

    Article  Google Scholar 

  28. Zamankhan P., G. Ahmadi, Z. C. Wang, P. K. Hopke, Y. S. Cheng, W. C. Su, D. Leonard. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol. Sci. Technol. 40: 463–476, 2006. doi:10.1080/02786820600660903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ray Guilmette for his contributions, help and support, and Earl Tewksbury and Brian Wong for pressure drop data. The authors also acknowledge the excellent technical assistance of Darin Kalisak and Regina Richardson. Funding for this project was provided by the American Chemistry Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Segal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, R.A., Kepler, G.M. & Kimbell, J.S. Effects of Differences in Nasal Anatomy on Airflow Distribution: A Comparison of Four Individuals at Rest. Ann Biomed Eng 36, 1870–1882 (2008). https://doi.org/10.1007/s10439-008-9556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9556-2

Keywords

Navigation