Skip to main content
Log in

Constitutive Modeling of Rate-Dependent Stress–Strain Behavior of Human Liver in Blunt Impact Loading

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An understanding of the mechanical deformation behavior of the liver under high strain rate loading conditions could aid in the development of vehicle safety measures to reduce the occurrence of blunt liver injury. The purpose of this study was to develop a constitutive model of the stress–strain behavior of the human liver in blunt impact loading. Experimental stress and strain data was obtained from impact tests of 12 unembalmed human livers using a drop tower technique. A constitutive model previously developed for finite strain behavior of amorphous polymers was adapted to model the observed liver behavior. The elements of the model include a nonlinear spring in parallel with a linear spring and nonlinear dashpot. The model captures three features of liver stress–strain behavior in impact loading: (1) relatively stiff initial modulus, (2) rate-dependent yield or rollover to viscous “flow” behavior, and (3) strain hardening at large strains. Six material properties were used to define the constitutive model. This study represents a novel application of polymer mechanics concepts to understand the rate-dependent large strain behavior of human liver tissue under high strain rate loading. Applications of this research include finite element simulations of injury-producing liver or abdominal impact events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. Inertial compensation of the force measurements is described in Sparks et al. 28

  2. For simplicity, if one assumes a uniform stress distribution across the loaded surface of the liver at each instant during the impact event, then the isolated load cell force divided by load cell cross-sectional area represents the nominal applied stress, averaged across the organ. See Melvin et al.,18 Galle et al.,12 and Miller.19

References

  1. Anand L. On H. Hencky’s approximate strain energy function for moderate deformations. J. Appl. Mech. 46:78–82, 1979

    CAS  Google Scholar 

  2. Argon A. S. A theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28:839–865, 1973. doi:10.1080/14786437308220987

    Article  CAS  Google Scholar 

  3. Arruda E. M., M. C. Boyce. Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9(6):697–720, 1993. doi:10.1016/0749-6419(93)90034-N

    Article  CAS  Google Scholar 

  4. Arruda E. M., M. C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2):389–412, 1993. doi:10.1016/0022-5096(93)90013-6

    Article  CAS  Google Scholar 

  5. Bilston L. E., Z. Liu, N. Phan-Thien. Large strain behavior of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38:335–345 2001

    PubMed  CAS  Google Scholar 

  6. Boyce M. C., G. G. Weber, D. M. Parks. On the kinematics of finite strain plasticity. J. Mech. Phys. Solids 37(5):647–665, 1989 doi:10.1016/0022-5096(89)90033-1

    Article  Google Scholar 

  7. Chui C., E. Kobayashi, X. Chen, T. Hisada, I. Sakuma Combined compression and elongation experiments and non-linear modeling of liver tissue for surgical simulation. Med. Biol. Eng. Comput. 42(6):787–798, 2004. doi:10.1007/BF02345212

    Article  PubMed  CAS  Google Scholar 

  8. Chui C., E. Kobayashi, X. Chen, T. Hisada, I. Sakuma Transversely isotropic properties of porcine liver tissue: experiments, constitutive modeling. Med. Biol. Eng. Comput. 45(1):99–106, 2007. doi:10.1007/s11517-006-0137-y

    Article  PubMed  CAS  Google Scholar 

  9. Dupaix R. B., M. C. Boyce. Finite strain behavior of poly(ethylene terephthalate) (PET), poly(ethylene terephthalate)-glycol (PETG). Polymer 46(13):4827–4838, 2005

    CAS  Google Scholar 

  10. Dupaix R. B., M. C. Boyce. Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39:39–52, 2007. doi:10.1016/j.mechmat.2006.02.006

    Article  Google Scholar 

  11. Elhagediab, A. M., and S. W. Rouhana. Patterns of abdominal injury in frontal automotive crashes. In: 16th International ESV Conference Proceedings, NHTSA, Washington, DC, 1998, pp. 327–337

  12. Galle B., H. Ouyang, R. Shi, E. Nauman. Correlations between tissue-level stresses and strains and cellular damage within the guinea pig spinal cord white matter. J. Biomech. 40:3029–3033, 2007. doi:10.1016/j.jbiomech.2007.03.014

    Article  PubMed  Google Scholar 

  13. Hurtuk M., R. L. Reed II, T. J. Esposito, K. A. Davis, F. A. Luchette. Trauma surgeons practice what they preach: the NTDB story on solid organ injury management. J. Trauma 61(2):243–255, 2006. doi:10.1097/01.ta.0000231353.06095.8d

    Article  PubMed  Google Scholar 

  14. Kerdok A. E., M. P. Ottensmeyer, R. D. Howe. Effects of perfusion on the viscoelastic characteristics of liver. J. Biomech. 39:2221–2231, 2006. doi:10.1016/j.jbiomech.2005.07.005

    Article  PubMed  Google Scholar 

  15. Lee E. H. Elastic-plastic deformation at finite strains. J. Appl. Mech. 36:1–6, 1969

    Google Scholar 

  16. Liu Z., L. E. Bilston. On the viscoelastic character of liver tissue: experiments and modelling of the linear behavior. Biorheology 37:191–201, 2000

    PubMed  CAS  Google Scholar 

  17. Liu Z., L. E. Bilston. Large deformation shear properties of liver tissue. Biorheology 39:735–742, 2002

    PubMed  Google Scholar 

  18. Melvin, J. W., R. L. Stalnaker, V. L. Roberts, and M. L. Trollope. Impact injury mechanisms in abdominal organs. In: Proceedings of the. 17th Stapp Car Crash Conference, Society of Automotive Engineers, Warrendale, PA, 1973, pp. 115–126

  19. Miller K. Constitutive modelling of abdominal organs. J. Biomech. 33: 367–373, 2000. doi:10.1016/S0021-9290(99)00196-7

    Article  PubMed  CAS  Google Scholar 

  20. Moy, P., T. Weerasooriya, A. Hsieh, and W. Chen. Strain rate response of a polycarbonate under uniaxial compression. In: Proceedings of the SEM Conference on Experimental Mechanics, Society of Experimental Mechanics, Charlotte, NC, 2003, pp. 269–275

  21. Mulliken A. D., M. C. Boyce. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct. 43:1331–1356, 2006. doi:10.1016/j.ijsolstr.2005.04.016

    Article  CAS  Google Scholar 

  22. Rietsch F., B. Bouette. The compression yield behavior of polycarbonate over a wide range of strain rates and temperatures. Eur. Polym. J. 10:1071–1075, 1990 doi:10.1016/0014-3057(90)90005-O

    Article  Google Scholar 

  23. Roetling J. Yield stress behavior of polymethylmethacrylate. Polymer 6:311–317, 1965. doi:10.1016/0032-3861(65)90081-9

    Article  CAS  Google Scholar 

  24. Rouhana, S. W., and M. E. Foster. Lateral impact—an analysis of the statistics in the NCSS. In: Proceedings of the 29th Stapp Car Crash Conference, Society of Automotive Engineers, Warrendale, PA, 1985, pp. 79–98

  25. Satmarel C., C. von Ferber, A. Blumen (2005) Dynamics of end-linked star polymers. J. Chem. Phys. 123(3):034907-1–034907-13

    Article  CAS  Google Scholar 

  26. Schon M. R., O. Kollmar, S. Wolf, H. Schrem, M. Matthes, N. Akkoc, N. C. Schnoy, P. Neuhaus. Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann. Surg. 233(1):114–123, 2001. doi:10.1097/00000658-200101000-00017

    Article  PubMed  CAS  Google Scholar 

  27. Schwartz J. M., M. Denninger, D. Rancourt, C. Moisan, D. Laurendeau. Modeling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Med. Image Anal. 9:103–112, 2005. doi:10.1016/j.media.2004.11.002

    Article  PubMed  Google Scholar 

  28. Sparks J. L., J. H. Bolte, R. B. Dupaix, K. H. Jones, S. M. Steinberg, R. Herriott, J. Stammen, B. Donnelly. Using pressure to predict liver injury risk from blunt impact. Stapp Car Crash J. 51:401–432, 2007

    PubMed  Google Scholar 

  29. Zhong H., T. Peters. A real time hyperelastic tissue model. Comput. Methods Biomech. Biomed. Eng. 10(3):185–193, 2007. doi:10.1080/10255840701292732

    Article  Google Scholar 

Download references

Acknowledgments

The liver impact experiments were sponsored by NHTSA Contract No. DTNH22-03-D-08000.28 This research was reviewed and approved by the Ohio State University Biomedical Sciences Human Subjects Review Committee and otherwise conducted in compliance with applicable NHTSA requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. Sparks.

Additional information

This research was conducted at the Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparks, J.L., Dupaix, R.B. Constitutive Modeling of Rate-Dependent Stress–Strain Behavior of Human Liver in Blunt Impact Loading. Ann Biomed Eng 36, 1883–1892 (2008). https://doi.org/10.1007/s10439-008-9555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9555-3

Keywords

Navigation